Search for electric dipole moment of the electron with laser-cooled radioactive atoms

Cyclotron and radioisotope center (CYRIC) Tohoku Univ.
Hirokazu Kawamura

Contents

1. Physics motivation
2. Rubidium factory
3. Francium factory
4. Summary and plan

Collaborators

CYRIC; Univ. of Tokyo; TMU; TAT; RCNP; JAEA; Kyoto Univ.; IITR; Tohoku Univ.; Kyusyu Univ.;
Symmetry and its violation

• Parity (spatial inversion symmetry) is violated.
 – 1956 T.D.Lee and C.N.Yang
 – 1957 C.S.Wu

• How about the time reversal symmetry?

$^{60}\text{Co} \rightarrow ^{60}\text{Ni} + e^- + \nu$
Search for the violation of time reversal symmetry

- Nonzero EDM d will violate the time reversal symmetry as well as the parity.

Permanent electric dipole moment (EDM) d

- Require extremely-high experimental precisions!

→ Laser cooling and trapping techniques
Journey of electron-EDM search

An electron EDM can induce a net atomic EDM. → The net EDM of a heavy atom can be many times larger than the electron EDM.

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms

No experimental result of EDM search for cooled/trapped radioactive atoms
EDM measurement

\[
\begin{align*}
B \neq 0 & \quad E = 0 & & \text{Cs EDM CELL experiment} \\
E = 0 & \quad B \neq 0 & & \text{Tl EDM BEAM experiment}
\end{align*}
\]

\[
\begin{align*}
B = 0 & \quad E = 0 & & m = +1/2 \\
E \parallel B & \quad B \neq 0 & & 2\mu_B \\
E \parallel -B & \quad B \neq 0 & & 2\mu_B + 2dE \\
B \neq 0 & \quad E = 0 & & 2\mu_B - 2dE \\
E = 0 & \quad B \neq 0 & & m = -1/2
\end{align*}
\]

Magnetic dipole moment \(\mu \)
Electric dipole moment \(d \)
Limitations of cell and collinear beam experiment

Systematic errors in EDM experiments

- Motional magnetic fields, \(B_m = \frac{v \times E}{c^2} \)
- Misalignment of static magnetic field \(B_0 \) with static electric field \(E \); cause a component of \(B_m \) to lie along \(B_0 \)
- Magnetic field \(B_E \), generated by leakage and/or changing currents, inaccuracy of high voltage electric field reversals, correlated with \(E \)
- Geometric phase shifts generated by complicated field gradients
- Magnetic Johnson noise generated by traditionally used metals in Electric field plates, vacuum chamber, magnetic shield etc

These effects limit the precision of e-EDM measurement...

Some of effects originate from the motion of the particles.
To overcome these systematic errors, laser cooling and trapping is employed for measuring the e-EDM.
Laser cooling and trapping

Absorption and emission → Change momentum

Absorption = one-sided
Emission = isotropic

→ Cool down

1-dimensional cooling
(e.g. deceleration of atomic beam)

ω_l + kv = ω_a Doppler shift

... Zeeman shift

3-dimensional cooling
(e.g. trap of atom)

MOT: magneto-optical trap

Atom cloud

Anti-Helmholtz coil

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Francium

- Heaviest alkali metal = Francium:
 - simple electronic structure and large nucleus
 - Enhancement of EDM: Z=87 → K~10^3

Enhancement factor:

\[K \sim \frac{d_{\text{atom}}}{d_e} \sim Z^3 \alpha^2 \]

- Laser cooling and trapping techniques: localize atoms
 → Reduce systematic errors

- No stable isotopes: radioactive atom
 - Several isotopes with long half-life
 - $^{210}\text{Fr} = 3.2$ min, $^{211}\text{Fr} = 3.1$ min, $^{212}\text{Fr} = 20.$ min.
Overview of Fr EDM experiment

Francium: heaviest alkali element
Advantage to EDM experiment

Production using cyclotron

Rubidium: one of alkali elements
Useful for pilot experiments

Ionization

Stable isotopes

Ion beam transport

Neutralization

Laser cooling & trapping

EDM measurement

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Mini Laser-Cooled Rubidium Factory

Rb-ion source (Ionization)

Ion-beam focus lens & diagnosis (Ion beam transport)

Beam converter (Neutralization)

MOT (Laser cooling & trap)

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Rubidium-Ion Source

Saha-Langmuir equation

\[
\frac{n^+}{n^0} = \frac{1}{2} \exp\left(\frac{E_{WF} - E_{IP}}{kT}\right)
\]

Thermal ionization \(\leftrightarrow E_{IP}(\text{Fr}) < E_{WF}(\text{Mo}) \)

\(E_{IP} \) (Ionization potential): Fr 4.1 eV

\(E_{WF} \) (work function): Mo 4.6 eV

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Ion beam focus lens (electrostatic quadrupole triplet)

Ion trajectory simulation by TOSCA (finite-element technique)

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Beam converter

Saha-Langmuir equation

\[\frac{n^+}{n^0} = \frac{1}{2} \exp \left(\frac{E_{WF} - E_{IP}}{kT} \right) \]

for ionizer

Thermal ionization \(\Leftarrow \) \(E_{IP} < E_{WF}(Mo) \)

\(E_{IP} \) (Ionization potential): Fr 4.1 eV

\(E_{WF} \) (work function): Mo 4.6 eV

for neutralizer

Thermal neutralization \(\Leftarrow \) \(E_{IP} > E_{WF}(Y) \)

\(E_{WF} \) (work function): Y 3.1 eV

Atom:
- Ion potential
- Neutral atom

Target:
- Work function
- HIGH \(\rightarrow \) Ionization
- LOW \(\rightarrow \) Neutralization

Positive ion

Hot metal
Magneto-optical trap (MOT)

Neutralized Rb

Trap!

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Mini Laser-Cooled Rubidium Factory

Rb-ion source (Ionization)

Ion-beam focus lens & diagnosis (Ion beam transport)

Beam converter (Neutralization)

MOT (Laser cooling & trap)

Rb Trap!

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
This guy is the trapped Rb!

dia. ~ 2 mm

The maximum 10^6 atoms in trap

More trapped atoms are required!!
Laser-cooled francium factory @ CYRIC

Cyclotron and Radioisotope Center (CYRIC), Tohoku University

東北大学サイクロトロン・ラジオアイソトープセンター

Laser room

Optical fiber

Ext. room

Cyclotron

Target room

EDM meas. area (Ext. room)

Wall

Beam swinger

$^{185}_{18}O^{5+}$ (100MeV)

$^{197}_{97}Au + ^{18}_{8}O \rightarrow Fr + xn$

Fr$^+$ (5 keV)

10 meter

neutralize

Fr atom

trap

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Fr⁺-ion source ~ Thermal ionizer

Fusion reaction: \(^{18}\text{O} + ^{197}\text{Au} \rightarrow ^{210}\text{Fr} + 5\text{n}\)

Saha-Langmuir equation

\[
\frac{n^+}{n^0} = \frac{1}{2} \exp \left(\frac{E_{WF} - E_{IP}}{kT} \right)
\]

Thermal ionization \(\leftarrow E_{IP}(\text{Fr}) < E_{WF}(\text{Au})\)

\(E_{IP}\) (Ionization potential): Fr 4.1 eV

\(E_{WF}\) (work function): Au 5.1 eV

Ions can be extracted by electric fields.

Desorption from high-temperature liquid target

- **Faster diffusion**
- **Convection flow**
- **Clear surface**

\(\Rightarrow\) Efficient Ion Production

Available for molten gold.

Rb beam test w/o cyclotron.

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms

Beam swinger

\[^{197}\text{Au} + ^{18}\text{O} \rightarrow ^{197}\text{Fr} + \text{xn} \]

Fr atom

neutralize

trap

10 meter

1st beam diagnosis system

4th beam diagnosis system

Target room

EDM meas. area (Ext. room)

Laser-cooled francium factory @ CYRIC

Cyclotron and Radioisotope Center (CYRIC), Tohoku University

東北大学サイクロトロン・ラジオアイソトープセンター

AVF Cyclotron

2012 November

Beam swinger

\[^{18}\text{O}^{5+} (100\text{MeV}) \]

Fr\(^{+}\) (5 keV)
Francium is identified using SSD in Diagnosis system.

Solid State Detector:
detect alpha particles from unstable nuclei.

Checking source ^{241}Am placed near SSD for energy calibration.

Alpha-decay spectrum was obtained at a diagnosis system

Blue: originating from ^{241}Am

Green: originating from $^{208-212}\text{Fr}$ and also daughter nuclei
Experimental results (2012.Nov.)

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms

- **Gold target (room temperature)**

- **Molten gold (~1000 °C)**

Achieved $^{210}\text{Fr}^+$ yield: $\sim 10^6$ ion/sec
Laser-cooled francium factory @ CYRIC

Cyclotron and Radioisotope Center (CYRIC), Tohoku University

東北大学サイクロトロン・ラジオアイソトープセンター

Beam swinger

$^{180}_{\text{O}}^{5+} [\text{100 MeV}]$

Fr\(^+\) (5 keV)

$^{197}_{\text{Au}} + ^{180}_{\text{O}} \rightarrow \text{Fr} + \text{xn}$

10 meter

1st beam diagnosis system

4th beam diagnosis system

Target room

EDM meas. area (Ext. room)

neutralize

Fr atom

trap

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Laser-cooled francium factory @ CYRIC

Cyclotron and Radioisotope Center (CYRIC), Tohoku University

Beam converter

AVF Cyclotron

2013 February

1st beam diagnosis system

10 meter

197Au + 18O \rightarrow Fr + xn

Fr+ (5 keV)

180O5+ (100MeV)

Beam swinger

197Au + 18O \rightarrow Fr + xn

Target room

Wall

EDM meas. area (Ext. room)

Fr atom

neutralize

trap

Beam diagnosis system

2012 November 1st beam diagnosis system

2013 February

Beam converter

Beam swinger

AVF Cyclotron

197Au + 18O \rightarrow Fr + xn

Fr+ (5 keV)

180O5+ (100MeV)

Beam swinger

197Au + 18O \rightarrow Fr + xn

Target room

Wall

EDM meas. area (Ext. room)

Fr atom

neutralize

trap

Beam diagnosis system

2012 November 1st beam diagnosis system

2013 February
Fr neutralization (2013.Mar.)

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms

- $^{241}\text{Am} (5.49 \text{ MeV})$
- $^{211}\text{Fr} (6.53 \text{ MeV})$
- $^{210}\text{Fr} (6.54 \text{ MeV})$
- $^{208}\text{Fr} (6.64 \text{ MeV})$
- $^{209}\text{Fr} (6.65 \text{ MeV})$

Preliminary
Orthotropic type beam converter

Neutralizer target: Y
($T_{\text{melt}}=1526^\circ\text{C, } E_{WF}=3.1\text{eV}$)

Ionizer oven: Pt
($T_{\text{melt}}=3825^\circ\text{C, } E_{WF}=5.6\text{eV}$)

Electric field simulation by OPERA-3d/TOSCA

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Towards the highly efficient trap and EDM measurement...

Beam converter Transverse cooling Zeeman slower

1^{st} MOT (diagnosis)

2^{nd} MOT (reservoir)

EDM measurement chamber

Optical trap

Optical tweezer

Magnetic shield

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms
Summary and Outlook

GOAL
Fr-EDM experiment

SETUP

- Mini laser-cooled Rb factory

 - Rb ionization
 - Ion transport
 - Neutralization
 - Trap

 - Laser-cooled Fr factory at Cyclotron & Radioisotope Center

 - Fr ion production
 - Ion transport
 - Neutralization
 - Trap

- Upgrade of each device
- Francium trapping
- Development of EDM measurement system

Hirokazu Kawamura / Search for electric dipole moment of the electron with laser-cooled radioactive atoms