One of purposes of ILC is to measure Higgs coupling constant precisely, especially to b-quark and c-quark. ILC is a lepton collider, so precise measurement of Higgs boson coupling to b-quark and c-quark can be done.

FPCCD Vertex Detector will satisfy this!

FPCCD Vertex Detector

FPCCD (Fine Pixel CCD) Vertex Detector will enable precise flavor tagging.

- Space resolution: **Very Good**
- Pixel occupancy of background: **Good**
- Two-track separation capability: **Good**
- Background rejection by cluster shape: **Good**
- Readout per one train: **completely free** from beam-induced RF noise (EMI)

Performance Evaluation and Software Development for FPCCD

Higgs Study in ILC

The golden mode of Higgs generation process in ILC is $ee \rightarrow ZH$. One of these, $W^+ W^-$ production, is illustrated here. I.L.C. calculates the $W^+ W^-$ cross section per one train (1 ms).

Before building FPCCD Vertex Detector, its performance should be evaluated and optimized.

Performance Evaluation and Software Development for FPCCD

Pixel Occupancy of Background

Main background in VXD is caused by electron-positron beam.

- at 500 GeV: Occupancy is less than 1%, even in the outer 4 layers.
- at 1 TeV: Occupancy is less than 1%, even in the outer 4 layers.

Pixel-size configuration has been optimized to reduce power consumption of readout.

If pixel size in the outer 4 layers are 10μm x 10μm, then power consumption of readout is decreased by 70%. If both occupancy and I.P. resolution remain OK, this value is very attractive.

Occupancy requirement cleared with 10μm x 10μm pixel configuration!

- at 1 TeV:
 - layer No. 5 x 5 μm2: 0.0
 - layer No. 10 x 10 μm2: 0.2

Summary and Plan

- If FPCCD is used, Occupancy: OK (under $E_{CM} = 500$ GeV)
- Impact parameter resolution: **Very Good**
- Power consumption can be reduced with new configuration of pixel size.

Problem about the efficiency:
1. Why is the efficiency at 1GeV with 100 ~ 1000BX higher than that with 0BX?
2. Why is the efficiency at 1GeV with 100 ~ 1000BX higher than that with 0BX?

I.L.C.

- **Electron-positron beam.**
- **Total length:** 31 km
- **Peak luminosity:** 2×10^{34} cm$^{-2}$s$^{-1}$
- **Energy range:** 250 ~ 500 GeV (upgrade: 1 TeV)
- **Vertex Detector:** Required to see measure 100 μm scale and below.

FPCCD Vertex Detector

FPCCD (Fine Pixel CCD) Vertex Detector will enable precise flavor tagging.

- **Basic Characteristics**
 - pixel size: 5μm x 5μm
 - sensor thickness: 50μm
 - number of pixels: $\sim 10^9$
 - fully depleted CCD
 - three doublet structure
 - background rejection by cluster shape: Good
 - readout per one train: completely free from beam-induced RF noise (EMI)

Before building FPCCD Vertex Detector, its performance should be evaluated and optimized.

Summary and Plan

- If FPCCD is used, Occupancy: OK (under $E_{CM} = 500$ GeV)
- Impact parameter resolution: **Very Good**
- Power consumption can be reduced with new configuration of pixel size.

Beam Test: June 2013.
I’ll prepare analysis code to derive FPCCD’s excellent spatial resolution.