Asymptotic error distributions of the Crank-Nicholson scheme for SDEs driven by fractional Brownian motion

Nobuaki Naganuma Mathematical Institute, Tohoku University

1 Introduction

We consider the following 1-dim SDE:

$$\begin{cases} dX_t = \sigma(X_t) d^{\circ} B_t, & t \in (0, 1], \\ X_0 = x_0, \end{cases}$$

where *B* is a 1-dim. fBm on (Ω, \mathcal{F}, P) with the Hurst parameter 0 < H < 1. The solution is expressed by $X_t = \phi(x_0, B_t)$.

Remark 1. FBm B is a conti. centered Gaussian proc. with

$$E[B_sB_t] = \frac{1}{2}(s^{2H} + t^{2H} - |s - t|^{2H})$$

for some 0 < H < 1. Note that

- *B* is a Bm if H = 1/2, else *B* is NOT a semimartingale.
- *B* is $(H \epsilon)$ -Hölder continuous.

The Crank-Nicholson scheme $\{\hat{X}^{(m)}\}_{m=1}^{\infty}$ is defined by the solution to the equation:

$$\begin{cases} \hat{X}_{0}^{(m)} = x_{0} \\ \hat{X}_{t}^{(m)} = \hat{X}_{k2^{-m}}^{(m)} + \frac{1}{2} \left(\sigma \left(\hat{X}_{t}^{(m)} \right) + \sigma \left(\hat{X}_{k2^{-m}}^{(m)} \right) \right) (B_{t} - B_{k2^{-m}}) \\ t \in (k2^{-m}, (k+1)2^{-m}]. \end{cases}$$

2 Main theorem

Assumption 2. Assume 1/3 < H < 1/2 and

$$\sigma \in \mathit{C}^\infty_{\mathsf{bdd}}(\mathbb{R};\mathbb{R}), \qquad \quad \sup |\sigma'| > \mathsf{0}, \qquad \quad \inf |\sigma| > \mathsf{0}.$$

Theorem 3 (N). Under Assumption 2, we have

$$\lim_{k \to \infty} \left(B, 2^{m(3H-1/2)} (\hat{X}^{(m)} - X) \right)$$
$$= \left(B, \sigma(X) \cdot c_{3,H} \int_0^{\cdot} f_3(X_s) \, dW_s \right)$$

weakly in $\mathcal{D}([0, 1]; \mathbb{R}^2)$, where $c_{3,H} > 0$, $f_3 = (\sigma^2)''/24$, and W is a standard Brownian motion independent of B.

3 Proof

n

We have 5 steps in order to prove the main theorem.

3.1 Analysis of the Hermite variations

Let $q \ge 2$ and $f \in C^{2q}_{poly}(\mathbb{R};\mathbb{R})$. Put

$$G_q^{(m)}(t) = 2^{-m/2} \sum_{k=0}^{\lfloor 2^m t \rfloor - 1} \frac{f(B_{(k+1)2^{-m}}) + f(B_{k2^{-m}})}{2}$$

$$\times$$
 $H_q(2^{mH} \triangle B_{k2^{-m}}),$

where H_q denotes the *q*-th Hermite polynomial.

Proposition 4 (N). If
$$1/2q < H < 1 - 1/2q$$
, then we have

$$\lim_{m \to \infty} (B, G_q^{(m)}) = \left(B, c_{q,H} \int_0^{\cdot} f(B_s) dW_s\right)$$

weakly in weakly in $\mathcal{D}([0, 1]; \mathbb{R}^2)$.

3.2 Expression of the Crank-Nicholson sheme

Proposition 5 ([1]). Under Assumption 2, $\hat{X}^{(m)}$ satisfies

$$\begin{split} \hat{X}_{k2^{-m}}^{(m)} &= \phi \left(x_0, B_{k2^{-m}} + U_{k2^{-m}}^{(m)} \right) \\ &= X_{k2^{-m}} + \sigma (X_{k2^{-m}}) U_{k2^{-m}}^{(m)} + O((U_{k2^{-m}}^{(m)})^2), \end{split}$$

where $U^{(m)}$ is defined by $U_0^{(m)} = 0$ and

$$\begin{split} U_{(k+1)2^{-m}}^{(m)} &= U_{k2^{-m}}^{(m)} + f_3\left(\hat{X}_{k2^{-m}}^{(m)}\right) (\triangle B_{k2^{-m}})^3 \\ &+ f_4\left(\hat{X}_{k2^{-m}}^{(m)}\right) (\triangle B_{k2^{-m}})^4 + O\left((\triangle B_{k2^{-m}})^5\right) \\ \end{split}$$
where $f_3 &= (\sigma^2)''/24$ and $f_4 = \sigma(\sigma^2)''/48.$

3.3 Decomposition into the main term and the remainders

Proposition 6 (N). Under Assumption 2, we have the expansion, for every $\alpha \ge 1$,

$$U^{(m)}=\sum_{eta=1}^{lpha} {\mathbf \Phi}^{(m,eta)}+O(2^{m(lpha+1)}(riangle B)^{3(lpha+1)}),$$

where $\Phi^{(m,1)}$ is definde by $\Phi_0^{(m,1)} = 0$ and

$$arPsi_{(k+1)2^{-m}}^{(m,1)} = arPsi_{k2^{-m}}^{(m,1)} + f_3\left(X_{k2^{-m}}
ight) (riangle B_{k2^{-m}})^3 \ + f_4\left(X_{k2^{-m}}
ight) \left(riangle B_{k2^{-m}}
ight)^4,$$

and, for $\beta \geq 2$, $\Phi^{(m,\beta)}$ is also defined explicitly.

3.4 Convergence of the main term

Proposition 7 (N). Under Assumption 2, we have

$$\lim_{m \to \infty} (B, 2^{m(3H-1/2)} \Phi^{(m,1)}) = \left(B, c_{3,H} \int_0^{\cdot} h(B_s) \, dW_s \right)$$

weakly in $\mathcal{D}([0,1];\mathbb{R}^2)$.

Proof. Put $h(\eta) = f_3(\phi(x_0, \eta))$. Then we have

 $2^{m(3H-1/2)} \Phi^{(m,1)}$

$$=2^{-m/2}\sum_{k=0}^{\lfloor 2^{m} \rfloor -1} \left(h(B_{k2^{-m}})+\frac{1}{2}h'(B_{k2^{-m}})\right) (2^{mH} \triangle B_{k2^{-m}})^3$$

Using the Taylor formula, $\xi^3 = H_3(\xi) + 3\xi$ and Proposition 4, we have the assertion.

3.5 Convergence of the remainders

By long calculation, we have $\Phi^{(m,\beta)} \to 0$ for $\beta \ge 2$.

References

 I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In Séminaire de probabilités XLI, volume 1934 of Lecture Notes in Math., pages 181–197. Springer, Berlin, 2008.