Analysis of 85Kr concentration in KamLAND with rollback technique

Benda Xu
benda@awa.tohoku.ac.jp
Research Center for Neutrino Science, Department of Physics, Tohoku University

- trigger efficiency
 - rollback window length (longer is better)
 - trigger threshold (lower is better)
 - data flow, grows with efficiency (lower is better)

Multiply balanced

- trigger efficiency
- rollback window length (longer is better)
- trigger threshold (lower is better)
- data flow, grows with efficiency (lower is better)

MoGURA Electronics

- 100 μs buffer
 - programmable trigger logic

Efficiency against Flow for Different Rollback Windows

- 0.1 μs
- 0.2 μs
- 0.5 μs
- 1.0 μs
- 2.0 μs
- 3.0 μs
- 4.0 μs
- 5.0 μs
- 8.0 μs

Lowest threshold & highest efficiency

Data Flow

- prompt vs distribution
- delayed vs distribution

- prompt vs distribution
- delayed vs distribution

- prompt vs distribution
- delayed vs distribution

Prompt event
Delayed event

Balance

- applied after a cut based on median absolute deviation
- $K=2$
- $O(n^2)$

K-means 1D

Impact on 7Be solar ν uncertainty

- 7Be solar ν
- 7Kr

Comparison of Spectra

- 7Be electron recoil
- 85Kr major branch

Level diagram for 85Kr

- Nuclear Fusion Reaction
- CNO-cycle
- 1.5%

Hep + 85Kr → 85Rb
Hep + 85Kr → 85Rb
Hep + 85Kr → 85Rb
Hep + 85Kr → 85Rb

- 85Kr (K-12)

Neutrino Spectrum (±10)

- 85Kr (K-12)

Flux (antineutrinos\cdotm$^2\cdot$year$^{-1}$)
Neutrino Energy [MeV]