P-21 Study of double delta photoproduction on the deuteron target

Fumiya Yamamoto for the NKS2 collaboration, Department of Physics, Tohoku Univ.

Introduction

Nuclear photon absorption

When photon beam impinged on the nucleus,
* nucleus is excited at the photon energy 1 MeV - 150 MeV.
* single nucleon (general term of proton and neutron) is excited at the photon energy 150 MeV -.

The difference of photon absorption reaction with two energy region.

Nucleon resonance

The nucleon resonances are the excited states of nucleon.
These emit mesons (π or η etc.) and decay. Delta particle is one of the nucleon resonances and decay for πN. The life time is very short 10^{-23} s. The mass is 1232 MeV.

Experiment

Neutral Kaon Spectrometer 2 (NKS2)
Measurement of the velocity and momentum of the charged particle
Component :
* Dipole magnet : Momentum analysis
* Hodoscope : Time of flight
* Drift chamber : Detection of track
Right figure : NKS2 seen from the photon beam down stream

Analysis

Identification for π^*, π and proton
- Using of the velocity β and momentum p of the charged particle, the particle mass is calculated.

 $$m^2 = p^2(\beta^2 - 1)$$

Selection of yd \rightarrow $\pi^*\pi p n$ reaction
- Missing particle : Non detected particle. From energy-momentum conservation, the mass of missing particle is calculated and the neutron is identified.

 $$M_n^2 = E_x^2 - P_n^2$$
 $$E_x = E_x + M_x - (E_x + E_x + E_p)$$
 $$P_n = P_x - (P_x + P_n + P_p)$$

M : Particle mass
E : Particle energy
P : Particle momentum
*A lower index expresses the kind of particles.

Double delta photoproduction process on the deuteron

Double delta excitation in the intermediate state of $\pi^*\pi^*$ photoproduction process. Since the wave length for photons is smaller than the average internucleon spacing for deuteron, it is wonderful that two nucleons excite.

Result

Double delta excitation
- Invariant mass : From energy-momentum conservation before and after decay, the mass of particles before decay are calculated. For example, since the delta particles are decayed for π and N,
 $$M_\Delta^2 = (E_\Delta + E_\Delta) - (P_\pi + P_\pi)$$

 - A lower figures are the invariant mass distribution πN.
 - Right side top : Invariant mass of πp.
 - Right side bottom : Invariant mass of πn.
 - From left side figure -> double delta excitation.

Summary

- Double delta photoproduction is the process which excited double delta in the intermediate state.
- The experiment is carried out at ELPH.

- π^*, π and proton were detected using NKS2.
- Neutron was identified using the missing mass.
- Double delta excitation in the intermediate state was shown using the invariant mass distribution $\pi^* p$ and πn.