Role of noncollective excitations in low-energy heavy-ion reactions

Shusaku Yusa, Kouichi Hagino (Tohoku Univ.), Neil Rowley (IPN Orsay)

1. **Introduction**

 - Heavy-ion reaction
 - Nucleus is composed of protons and neutrons
 - Excitations during the scattering process (channel coupling effect)
 - Large enhancement of fusion cross sections at sub-barrier energies

2. **Quasi-elastic scattering (elastic + inelastic + transfer)**

 - Experiment for $^9Na + ^{90}Zr$

 - Quasi-elastic quasi-barrier distributions show different behavior
 - Much more smeared distribution for $^{20}Ne + ^{90,92}Zr$ system

 - On the other hand, C.C. calculation (which includes rotation in ^{90}Na and vibration in ^{90}Zr) yields similar barrier distributions between two systems
 - Dominates the contribution from highly deformed ^{90}Na

 - Conventional C.C. calculation (which takes into account only the collective excitations) cannot account for the experimental data!

3. **Energy spectrum for Zr isotopes**

 - Different level density
 - ^{92}Zr: 75 levels up to 5.7 MeV are included

 - Noncollective (single-particle) excited states appear in ^{92}Zr spectrum

 - Important role of the noncollective excitations for $^{20}Ne + ^{90,92}Zr$ reaction?

4. **Description of noncollective excitations**

 - Coupled-channels equations
 - In the iso-centrifugal approximation
 - Random matrix theory (RMT) for couplings to noncollective states

5. **Coupled-channels calculation for $^{90}Na + ^{90,92}Zr$ included channels (model space)**

 - Collective excitations for ^{90}Na and ^{92}Zr
 - ^{90}Na: $l = 0$, 2, 4; d (rotational states), 3 (octupole phonon state)

6. **Results**

 - Quasi-elastic scattering for $^{90}Na + ^{90,92}Zr$ systems

 - For $^{90}Na + ^{90}Zr$ system, the effect of the noncollective excitations is small

 - For $^{90}Na + ^{92}Zr$ system, the barrier distribution is drastically smeared

7. **Summary**

 - Role of noncollective excitations in low-energy heavy-ion reactions
 - Conventional coupled-channels analysis for heavy-ion reactions takes into account only collective excitations
 - Random matrix model for the description of noncollective excitations
 - Different magnitude of the noncollective effect between $^{90}Na + ^{90,92}Zr$ systems
 - Difference in the barrier distribution can be expected for $^{90}Mg + ^{90,92}Zr$ reactions

 - Quantum mechanical study of friction