

4th Scienceweb GCOE International Symposium
Tohoku University 2012

Outline

Spacetime quantum geometry

Applying the principles of quantum mechanics to space & time

Outline

- spacetime non-commutativity
- particle physics on non-commutative spaces
- non-commutative gravity and fuzzy black holes
- large scale application of small scale math (CMB analysis)
- higher geometric structures

Planck scale quantum geometry

Heuristic argument: quantum + gravity

"The gravitational field generated by the concentration of energy required to localize an event in spacetime should not be so strong as to hide the event itself to a distant observer."

→ fundamental length scale, spacetime uncertainty

$$\Delta x \geq \sqrt{rac{\hbar G}{c^3}} pprox 1.6 imes 10^{-33} ext{cm}$$

 $uncertainty \ principle \leftrightarrow noncommutative \ spacetime \ structure$

$$[\hat{x}^i,\hat{x}^j]=i\theta^{ij}(x)$$

Macroscopic non-commutativity

Landau levels charged particle in a constant magnetic field $\vec{B} = \nabla \times \vec{A}$: quantize $\vec{p} = m\vec{x} - e\vec{A}$ conjugate to \vec{x} for $m \to 0$ (projection onto 1st Landau level):

$$[\hat{x}^i, \hat{x}^j] = \frac{2i}{eB} \epsilon^{ij} =: \theta^{ij}$$

Fractional Quantum Hall Effect
 Non-commutative (NC) fluids, NC Chern Simons theory

Loop quantum gravity, spacetime foam

- non-perturbative framework
- defines quantum spacetime in algebraic terms
- integrating out gravitational degrees of freedom appears to yield effective NC actions with Lie-type NC structure

$$[\hat{x}^i, \hat{x}^j] = i\kappa\hbar\epsilon^{ijk}\hat{x}^k$$
, $\kappa = 4\pi G$ (κ -Minkowski space)

(feasible so far only for 2+1 dimensions)

Non-commutativity in string theory

- effective dynamics of open strings ending on D-branes: non-abelian gauge theory
- ▶ in closed string background B-field → non-commutative gauge theory

string endpoints become non-commutative:

$$\langle f_1(x(\tau_1)) \dots f_n(x(\tau_n)) \rangle = \int dx \, f_1 \star \dots \star f_n, \qquad \tau_1 < \dots < \tau_n$$

with star product \star depending on B.

Star product

General x-dependent NC structure:

$$f \star g = f \cdot g + \frac{i}{2} \sum_{j} \theta^{ij} \partial_{i} f \cdot \partial_{j} g - \frac{\hbar^{2}}{4} \sum_{j} \theta^{ij} \theta^{kl} \partial_{i} \partial_{k} f \cdot \partial_{j} \partial_{l} g$$
$$- \frac{\hbar^{2}}{6} \left(\sum_{j} \theta^{ij} \partial_{j} \theta^{kl} \partial_{i} \partial_{k} f \cdot \partial_{l} g - \partial_{k} f \cdot \partial_{i} \partial_{l} g \right) + \dots$$

on coordinates:

$$[x^i \stackrel{\star}{,} x^j] = i\theta^{ij}$$

How does a quantum space look like?

How does a quantum space look like?

How does a quantum space look like?

(q-Minkowski space; Cerchiai, Wess 1998)

Quantum/Noncommutative Spacetime

model of quantum geometry, spacetime uncertainty

Particle physics on non-commutative spaces

- construction of QFT on quantum spacetime
- experimental signatures?

Features

 controlled Lorentz violation, non-locality, UV/IR mixing, mixing of internal & spacetime symmetries

Non-commutative Standard Model I Connes, Lott; Madore (+ many others)

spacetime augmented by a discrete space

- Higgs field is NC gauge potential in the discrete direction
- beautiful geometrical interpretation of the full SM
- unlucky prediction of the Higgs mass

Non-commutative Standard Model II

Calmet, Jurco, PS, Wess, Wohlgenannt (+ many others)

- deformed spacetime with *-product
- particle content and structure group of undeformed SM
- enveloping algebra formalism, SW maps
- many new SM forbidden interactions

Star product and Seiberg-Witten map Star product:

$$f\star g=fg+rac{1}{2} heta^{\mu
u}\partial_{\mu}f\,\partial_{
u}g+\ldots\,.$$

Corresponding expansion of fields via SW map:

$$\widehat{A}_{\mu}[A,\theta] = A_{\mu} + \frac{1}{4}\theta^{\xi\nu} \{A_{\nu},\partial_{\xi}A_{\mu} + F_{\xi\mu}\} + \dots$$

$$\widehat{\Psi}[\Psi,A,\theta] = \Psi + \frac{1}{2}\theta^{\mu\nu}A_{\nu}\partial_{\mu}\Psi + \frac{1}{4}\theta^{\mu\nu}\partial_{\mu}A_{\nu}\Psi + \dots$$

$$\widehat{\Lambda}[\Lambda,A,\theta] = \Lambda + \frac{1}{4}\theta^{\xi\nu} \{A_{\nu},\partial_{\xi}\Lambda\} + \dots$$

Deformed action

Matrix multiplication is augmented by ⋆-products.

e.g.: noncommutative Yang-Mills-Dirac action:

$$\widehat{S} = \int d^4x \, \left(-\frac{1}{4} \, Tr(\widehat{F}_{\mu\nu} \star \widehat{F}^{\mu\nu}) + \overline{\widehat{\Psi}} \star i \widehat{\mathcal{D}} \, \widehat{\Psi} \right)$$

with NC field strength

$$\widehat{F}_{\mu\nu} = \partial_{\mu}\widehat{A}_{\nu} - \partial_{\nu}\widehat{A}_{\mu} - i[\widehat{A}_{\mu} \stackrel{\star}{,} \widehat{A}_{\nu}]$$

Non-perturbative effects at the quantum level

Beta function of U(N) NC Yang-Mills theory:

$$\beta(g^2) = \frac{\partial g^2}{\partial \ln \Lambda} = -\frac{22}{3} \frac{g^4 N^2}{8\pi^2}$$

like ordinary SU(N) gauge theory – but holds also for N = 1

This U(1) NC gauge theory is asymptotically free with strong coupling effects at large distance scales.

Photon neutrino interaction neutral particles can interact with photons via ⋆-commutator

$$D_{\mu}\Psi = \partial_{\mu}\Psi - i[A_{\mu} , \Psi]$$

1-loop contributions to neutrino self-energy:

Superluminal neutrinos? deformed dispersion relation

$$p^2 \sim \underbrace{\left(\left(rac{8\pi^2}{e^2}-1
ight)\pm 2\left(rac{8\pi^2}{e^2}-1
ight)^{rac{1}{2}}
ight)}^{rac{1}{2}}\cdot p_r^2\,,$$

direction dependent neutrino velocity

$$E^2 = |\vec{p}|^2 c^2 (1 + k \sin^2 \theta)$$
.

Horvat, Ilakovac, PS, Trampetic, You: arXiv:1111.4951v1 [hep-th]

Non-commutative gravity and exact solutions

- Gravity on non-commutative spacetime
- Fuzzy black hole solutions

Motivation

Quantum black holes

- nice theoretical laboratory for physics beyond QFT/GR
- ▶ information paradox, entropy, holography, singularities, ...

Major obstacle

- The existence of a fundamental length scale is a priori incompatible with spacetime symmetries
- ⇒ The symmetry (Hopf algebra) must be deformed

Drinfel'd twisted symmetry:

$$\mathcal{F} = \exp\left(-rac{i}{2} heta^{ab}\ V_a\otimes V_b
ight)\ , \qquad [V_a,V_b] = 0$$
 $\Delta_\star(f) = \mathcal{F}\Delta(f)\mathcal{F}^{-1} \qquad f\star g = ar{\mathcal{F}}(f\otimes g)$

Twisted tensor calculus

Two simple rules:

- The transformation of individual tensors is not deformed
- ► Tensors must be *-multiplied

Twisted quantization, Hopf algebra symmetry in string theory: Asakawa, Watamura (Tohoku University)

ightarrow afternoon session: T. Asakawa "NC solitions of gravity"

Drinfel'd twisted symmetry:

$$\mathcal{F} = \exp\left(-rac{i}{2} heta^{ab}\ V_a\otimes V_b
ight)\ , \qquad [V_a,V_b] = 0$$
 $\Delta_\star(f) = \mathcal{F}\Delta(f)\mathcal{F}^{-1} \qquad f\star g = ar{\mathcal{F}}(f\otimes g)$

Twisted tensor calculus

Two simple rules:

- The transformation of individual tensors is not deformed
- ► Tensors must be *-multiplied

Twisted quantization, Hopf algebra symmetry in string theory: Asakawa, Watamura (Tohoku University)

ightarrow afternoon session: T. Asakawa "NC solitions of gravity"

Deformed Einstein equations

with "non-commutative sources" $T_{\mu
u}$

$$R_{\mu
u}(G,\star) = T_{\mu
u} - rac{1}{2}G_{\mu
u}T$$

Solutions?

Solution = mutually compatible pair:

- ▶ algebra (twist) *
- metric G_{μν}

Exact solution with rotational symmetry

Star product (twist) for tensors:

$$V \star W = VW + \sum_{n=1}^{\infty} C_n(\frac{\lambda}{\rho}) \mathcal{L}_{\xi_+}^n V \mathcal{L}_{\xi_-}^n W$$

left invariant Killing vector fields: $\xi_{\pm} = \xi_1 \pm i\xi_2$ commutative radius: $\rho^2 = x^2 + y^2 + z^2$

$$C_n(\frac{\lambda}{\rho}) = B(n, \frac{\rho}{\lambda})$$

$$= \frac{\lambda^n}{n! \, \rho(\rho - \lambda)(\rho - 2\lambda) \cdots (\rho - (n-1)\lambda)}$$

Metric

in isotropic coordinates

$$ds^{2} = -\left(1 - \frac{a}{\rho}\right)dt^{2} + \frac{r^{2}}{\rho^{2}}(dx^{2} + dy^{2} + dz^{2})$$

with

$$r = (\rho + a/4)^{2}/\rho, \quad a = 2M$$
$$\rho^{2} = g_{ij}x^{i}x^{j} = x^{2} + y^{2} + z^{2}$$
$$[x_{i} * x_{j}] = 2i\lambda\epsilon_{ijk}x_{k}$$

⇒ quantized, quasi 2-dimensional "onion"-spacetime:

$$\rho = 2j\lambda = n\lambda; \quad n = 0, 1, 2, \dots$$

Hilbert Space

$$L_2(\mathbb{R}^3) \to L_2(S_2)$$

We find the following surprising result:

States describing events in 3 dim NC bulk are equivalent to wave functions on a sphere (minus a fuzzy sphere)

$$\mathcal{H} = \bigoplus_{n>N} \mathbb{C}^{n+1} = \bigoplus \mathbb{C}^{n+1} - \mathcal{H}_{hidden}$$

- NC Schwarzschild solution = "Fuzzy Black Hole"
- Holographic behavior appears quite naturally

NC: bulk (3D) \rightarrow surface (2D)

Heuristically:

- (1) coordinates are no longer independent: $z \sim [x, y]$
- (2) number of commuting operators = two

Inside NC black hole

two sequences of fuzzy spheres with limit points at r = 0 (singularity) and r = a (horizon)

Fuzzy black hole inside and outside, in one figure:

Coherent States, Star Products, Entropy

Generalized coherent state (SU(2), spin j representation)

$$|\Omega\rangle = \mathcal{R}_{\Omega}|j,j\rangle, \quad \mathcal{R}_{\Omega} \in SU(2)/U(1); \qquad (2j+1)\int \frac{d\Omega}{4\pi}|\Omega\rangle\langle\Omega| = 1_{j}$$

Star product

For
$$A(\Omega):=\langle \Omega|A|\Omega\rangle$$
 and $B(\Omega):=\langle \Omega|B|\Omega\rangle$ define:

$$A(\Omega) \star B(\Omega) = \langle \Omega | AB | \Omega \rangle$$

Coherent States, Star Products, Entropy

Von Neumann entropy

$$S_Q(\rho) = -\mathrm{tr} \rho \ln \rho = -(2j+1) \int \frac{d\Omega}{4\pi} \rho(\Omega) \star \ln_{\star} \rho(\Omega)$$

Now "switch off" (or ignore) noncommutativity \Rightarrow Wehrl entropy

$$egin{aligned} S_W(
ho) &= -(2j+1)\int rac{d\Omega}{4\pi}
ho(\Omega)\ln
ho(\Omega) \ &\geq -(2j+1)\int rac{d\Omega}{4\pi}|\langle\Omega|\Psi
angle|^2\ln|\langle\Omega|\Psi
angle|^2 \ &> 0 \quad ext{even for pure states} \end{aligned}$$

Coherent states and CMB

Coherent state analysis of CMB

Coherent states and CMB

CMB at j = 5 with multi-pole vectors (\sim coherent states)

Coherent states and CMB

CMB at j = 28

Beyond "non-commutative"

Recent work in M-theory reveales non-associative higher geometric structures featuring Nambu brackets:

- ▶ Basu-Harvey equations, fuzzy S₃ funnels
- ▶ Bagger-Lambert action for multiple M2 and M5-branes
- → afternoon session: M. Sato "3-algebra Model of M-Theory"

Nambu mechanics

multi-Hamiltonian dynamics with generalized Poisson brackets e.g. Euler's equations for the spinning top:

$$\frac{d}{dt}L_i = \{L_i, \frac{\vec{L}^2}{2}, T\} \qquad i = 1, 2, 3$$

with angular momenta L_1 , L_2 , L_2 , kinetic energy $T = \sum \frac{L_i^2}{2I_i}$ and Nambu-Poisson bracket

$$\{f,g,h\} \propto \det \left[\frac{\partial (f,g,h)}{\partial (L_1,L_2,L_3)} \right] = \epsilon^{ijk} \, \partial_i f \, \partial_j g \, \partial_k h$$

Nambu-Poisson (NP) bracket more generally:

$$\{f,h_1,\ldots,h_p\}=\Pi^{i\,j_1\ldots j_p}(x)\,\partial_i f\,\partial_{j_1}h_1\,\cdots\,\partial_{j_p}h_p$$

+ Fundamental Identity (FI)

$$\{\{f_0, \cdots, f_p\}, h_1, \cdots, h_p\} = \{\{f_0, h_1, \cdots, h_p\}, f_1, \cdots, f_p\} + \dots \\ \dots + \{f_0, \dots, f_{p-1}, \{f_p, h_1, \cdots, h_p\}\}$$

Nambu-Dirac-Born-Infeld action

(B Jurco & PS 2012)

 $commutative \leftrightarrow non-commutative \ symmetry \ implies$

$$S_{DBI} = \int d^{n}x \frac{1}{g_{m}} \det^{\frac{\rho}{2(\rho+1)}} [g] \det^{\frac{1}{2(\rho+1)}} \left[g + (B+F)\tilde{g}^{-1}(B+F)^{T} \right]$$

$$= \int d^{n}x \frac{1}{G_{m}} \det^{\frac{\rho}{2(\rho+1)}} \left[\hat{G} \right] \det^{\frac{1}{2(\rho+1)}} \left[\hat{G} + (\hat{\Phi} + \hat{F})\tilde{\tilde{G}}^{-1}(\hat{\Phi} + \hat{F})^{T} \right]$$

This action interpolates between early proposals based on supersymmetry and more recent work featuring higher geometric structures.

