Y-band Imaging of Extragalactic Fields and High red-shift Quasar

Changsu Choi1,2, Myungshin Im1,2, W. Park2, J. Kim2, Y. Jeon1,2, H. Jun1,2,

1 Seoul National University
2 Center for Exploration of origin of the universe
Introduction
Observation
Data
Results
CEOU QSO survey
Discussion
Conclusion & Summary

The 3rd GCOE international symposium, Astrophysics
Introduction

- Early universe
- Re-ionization
- Evolution of galaxies

Moving to Early and Far objects

Quasar (Quasi-Stellar radio source)
Super Massive Black Holes

The 3rd GCOE international symposium, Astrophysics
Introduction
High redshift Quasars

1. Evolution of SMBH
2. Metal Enrichment History
3. Re-ionization epoch
4. Quasar Luminosity Function

Until now ~10 (z>6),
We need more high red-shift Quasars!
And more distant quasars!

In searching for the high redshift quasar, longer wavelength region like “Y-band” is critical.
What is Y-band?

- Centered at 1 μm between optical and NIR (z - Y - J)
Why Y?

- Not deeply explored wavelength region so far
 - Optical CCD and NIR detector have no good sensitivity
 - Recent technology allow us to observe with Y-band!

- Past work with Y-band:
 - Good for identification of low mass and cool stars and brown dwarf. (Hillenbrand et al. 2002)
Extragalactic study with Y-band: important tool for high-redshift objects

- High red-shift objects: Galaxies and Quasars
- High red-shift QSOs (z > 6) photometric selection method (Fan et al. 2000, 2001; Warren & Hewett et al. 2002)
- Adopted to large projects (UKIDSS, Pan-STARRS)

United Kingdom Infra Red Telescope (UKIRT),
Pan-Starrs 1 (PS1)
At Mauna Kea summit
Searching for high red-shift quasar

Difficulties for searching high redshift quasar

• Contaminations of Candidate
 • M/L/T dwarfs
 • Low red-shift galaxies
 • Instrumental artifacts
Extragalactic study with Y-band: important tool for high-redshift objects

- High red-shift objects: Galaxies and Quasars
- High red-shift QSOs (z > 6) photometric selection method (Fan et al. 2000, 2001; Warren & Hewett et al. 2002)
- Adopted to large projects (UKIDSS, Pan-STARRS)
Goal of this study

- Deep Y-bang imaging of extragalactic fields with optical CCD at 1-m class telescope
 - 1 mag deeper than UKIDSS-LAS (the UKIRT Infrared Digital Sky Survey-Large Area Survey) (20.4 AB mag)
 - Ahead of Pan-STARRS (the Panoramic Survey Telescope & Rapid Response System)

The 3rd GCOE international symposium, Astrophysics
- Provide Photometric calibration data
- **Number count** of detected sources for first time in Y-band
- **Color-color diagram**: high-redshift QSO selection method \((i-z \text{ vs } z-Y)\)

Venemans et al. 2007
Observation : where?

- **LOAO**
 - 1m, Arizona
 - FLI 2K CCD
 - Seeing ~ 2.5"

- **Maidanak Observatory**
 - 1.5m AZT-22
 - Seeing ~ 0.7"
 - **SNUCAM**
Observation

Maidanak Observatory
66°56' E, 38°41' N

The 3rd GCOE international symposium, Astrophysics
Observation

- **LOAO 1m, Maidanak 1.5m telescope (#)**
- **Targets**: famous extragalactic fields, 5 brown dwarf, (*) 5 SDSS QSOs (z~6)

<table>
<thead>
<tr>
<th>Target</th>
<th>Log (Exp.time)</th>
<th>Area (deg²)</th>
<th>Depth 5σ (AB mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGS</td>
<td>4.18</td>
<td>0.1</td>
<td>20.2</td>
</tr>
<tr>
<td>FLS</td>
<td>3.7</td>
<td>0.1</td>
<td>20.0</td>
</tr>
<tr>
<td>NEP</td>
<td>2.95~4.2</td>
<td>0.96</td>
<td>18.4~20.5</td>
</tr>
<tr>
<td>UKIDSS</td>
<td>3.4</td>
<td>0.1</td>
<td>19.2</td>
</tr>
<tr>
<td># CFHT LS W1</td>
<td>3.75, 3.8</td>
<td>0.2</td>
<td>21.8</td>
</tr>
<tr>
<td># NEP</td>
<td>3.9</td>
<td>0.1</td>
<td>21</td>
</tr>
<tr>
<td>*SDSS J113717+354956.9</td>
<td>3.4</td>
<td>0.1</td>
<td>19.2</td>
</tr>
<tr>
<td>*SDSS J084035+562419.9</td>
<td>3.7</td>
<td>0.1</td>
<td>19.8</td>
</tr>
<tr>
<td>*SDSS J084119+290504.4</td>
<td>3.65</td>
<td>0.1</td>
<td>19.7</td>
</tr>
<tr>
<td>*SDSS J092721+200123.7</td>
<td>3.7</td>
<td>0.1</td>
<td>19.6</td>
</tr>
<tr>
<td>*SDSS J125051+313021.9</td>
<td>3.7</td>
<td>0.1</td>
<td>19.5</td>
</tr>
<tr>
<td>SDSS J065405+652805.4</td>
<td>3.6</td>
<td>0.1</td>
<td>19.0</td>
</tr>
<tr>
<td>SDSS J083506+195304.3</td>
<td>3.5</td>
<td>0.1</td>
<td>19.0</td>
</tr>
<tr>
<td>SDSS J104335+121314.1</td>
<td>3.5</td>
<td>0.1</td>
<td>19.0</td>
</tr>
<tr>
<td>SDSS J121951+312849.4</td>
<td>3.5</td>
<td>0.1</td>
<td>19.0</td>
</tr>
<tr>
<td>SDSS J109090+652527.1</td>
<td>3.4</td>
<td>0.1</td>
<td>19.0</td>
</tr>
</tbody>
</table>
Pre-process and stacking: IRAF

Astrometry: SCAMP, SWARP, (USNO B-1 catalog)

Standard star: A0V stars (zero color)

$k = 0.05 \sim 0.1$ (atmospheric extinction coefficient)

Photometry: Source Extractor

Cross matching: SDSS DR7, CFHT LS, UKIDSS DR2 plus, CFHT-NEP matched catalog (optical, IR)
A0V star: color is zero by definition

- $M = m + k(X-1) + \xi$
- $m = -2.5\log(DN/\text{sec})$
- $\xi_0 = m + m_0$
- $kX_1 + a = \xi_1$
- $kX_2 + a = \xi_2$

- A0V star: color is zero by definition
- M: actual magnitude
- m: instrumental magnitude
- k: atmospheric coefficient
- $X = \sec(z)$
- $\xi = \text{zero-point magnitude}$
Result: Number count

- Bright end: stellar sources
- Faint end: extended sources (extragalactic)
- Intermediate feature between I (optical) and J (NIR)-band number count
Effective method for high $-z$ QSO ($z \sim 6$) Distinction from brown dwarfs

Difficulties for searching high red-shift quasar
- Contaminations of Candidate
- M/L/T dwarfs
- Low red-shift galaxies
- Instrumental artifacts

The 3rd GCOE international symposium, Astrophysics
Detection limit: potential of 1-m class telescopes with unique equipments

Sensitivity limit: LOAO versus Maidanak
 - Good seeing In Maidanak

Other application of Y-band imaging
 - GRB afterglow observation
Infrared Medium-deep Survey (IMS) - CEOU

- $z \sim 7$ Quasar survey
 - The most distant known quasar at $z = 6.43$
 - Intermediate-wide, Medium-deep Survey
 - UKIRT J-band observation + SPITZER + CFHT + Subaru
 - 200deg^2, $J \sim 23 \text{ mag}$
z ~ 5.5 Quasar survey

- **SDSS + UKIDSS + Mcdonald observation**
- **3000 candidates**
- **CQUEAN (Camera for QUasars in EArly uNiverse)**
- **(McDonald 2.1m) + SDSS g, r, i + LSST z, Y, + Is, Iz filters**

The 3rd GCOE international symposium, Astrophysics
We carried out deep Y-band imaging observation at LOAO & Maidanak Observatory.

We performed Y-band source number count.

We found $i-z$ VS $z-Y$ color-color diagram is effective method of high-z QSO photometric selection.

There are another potentialities of 1m class telescope and Y-band observation.

CEOU is undergoing various survey to search high redshift quasars.

The 3rd GCOE international symposium, Astrophysics
Thank You

For more information
Please visit http://ceou.snu.ac.kr

감사합니다
ありがとうございます

ありがとうございました