

H. Shimizu Laboratory of Nuclear Science Tohoku University

Classificat	ion of h	adrons	
(color SU(3	3) schem	ne)	
• meson	$q\overline{q}$	$u\overline{d}$: π^+	$\overline{u}d:\pi^-$
$3 \otimes \overline{3} = 8 \oplus 1$			
• baryon	qqq	uud : p	udd : n
<i>QCD</i> allows $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$			$\oplus 1$
exotic hadrons	s having a	different cor	ofigurations
* meson	$q\overline{q}q\overline{q}$	$c\overline{c}u\overline{u}:X(3872)$	
* baryon	$qqqq\overline{q}$	$uudd\overline{s}:\Theta$	+
color singlet states		pentaquark baryon	

intensive work on search for • dibaryons Exotic Hadrons qqqqqq baryoniums in these decades qqqqhybrid hadrons qqqg,qqgglueballs gg narrowness of the width No clear exotics were established before! the key for identification of exotics (= not have to be narrow (fall-apart decay) extra degrees of freedom • pentaguark undds Θ^+ came in. S = +110

Search for other members of the anti-decuplet

Pentaquark baryons

1.2 GeV electron synchrotron

Intensity of circulating electrons

Intensity control for the photon beam

Time dependence of the photon beam intensity

previous Experimental setup

SCISSORS II :206 pure CsI Crystals

 $(1.57 \text{ str} = 12.5\% \text{ of } 4 \pi)$ 16.2 Xo for Forward 148 crystals 13.5 Xo for Backward 58 crystals Plastic Counters Pseudosphere 55 cm Forward Block(74) Forward Block(74) Backward Block(29 Incident y Backward Block(29) Solid Target Chamber Hydrogen/Deuterium Solid Target $t = 8 \text{ cm} (N_T \sim 4 \times 10^{23}/\text{cm}^2)$

 $\gamma + N \rightarrow \eta + X$

Identification of η meson $\Gamma_{\eta-\gamma\gamma} = (39.43 \pm 0.26)\%$ $\rightarrow \gamma\gamma$ Decay Channel

γγ Invariant Mass Analysis

$$M_{\gamma\gamma}^{2} = 2E_{\gamma_{1}}E_{\gamma_{2}}(1 - \cos\Phi_{\gamma\gamma})$$

Energy : $E = \sum E_i$ Position : $R = \sum R_i E_i / \sum E_i$

Differential Cross Section (D)

$\gamma d \rightarrow \eta n p$

Normalization

#Incident Photons, #Target Nuclei, DAQ Efficiency Acceptance, Branching Ratio

Cross section for $\gamma d \rightarrow \eta np$

deuteron

There are several theoretical works.

U-spin conservation

a further study

Research project

SPring-8/LEPS:pentaquark $\Theta^+(1540)$ STB ring at LNS:narrow $N^*(1670)$

- <u>to reveal structure of hadrons</u>
- to determine the spin and parity of $N^*(1670)$ detection of neutral mesons decaying into photons $\longrightarrow 4\pi\gamma$ detector $N^*(1670) \rightarrow \eta n$ $N^*(1670) \rightarrow \pi^0 n$

• to establish anti-decuplet scheme experimentally one of the most important subjects in quark nuclear physics

Demonstration for multi photon detection

previous y detectors

 $\begin{array}{ll} 2\pi^0 \ production: & \pi^0 \to \gamma \gamma \\ & \pi^0 \to \gamma \gamma \end{array} + single \ \pi^0, \ single \ \eta \end{array}$

 π^{0}

Solid/Liquid Hydrogen Target

• feeding pipe (4N pure Al) cooled by a GM cooling system length: $1000 \, mm$ • target cell cooled down to 4.7 Ktarget thickness: 40 mminner diameter: 61 mm outer diameter: 65 mmwindow (Aramid): 12.5 µm × 2 • operation 3 hours pre-cooling: target making: 2 hours target vaporizing: 1 hour

2γ *invariant mass distributions* Data taking started a couple months ago.

Summary

 $\bullet \quad up \ to \ now$

We observed a narrow baryon resonance N*(1670) in the total cross section for the $\gamma d \rightarrow \eta np$ reaction. N* shows up on the neutron, but not on the proton. N* would be the first candidate for a pentaquark with hidden strangeness in the anti-decuplet.

research project
We aim to determine the spin and parity of N*(1670).
We started taking data with a fast DAQ system.
We look into the π channel γn → π⁰n and the coupling of N* with the proton with high statistics.