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Completely integrable systems

Let (X, ω) be a symplectic manifold of dimension 2N . A completely

integrable system on (X, ω) is a set of N functions

Φ = (f1, . . . , fN) : X −→ RN

satisfying

• Poisson commutativity: {fi, fj} = 0 for i, j = 1, . . . , N , and

• Functional independence.

If ω =
∑

i dpi ∧ dqi, the Poisson bracket is given by

{f, g} =
∑
i

(
∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi

)
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Arnold-Liouville Theorem: If fibers of Φ are compact, general fibers

are (union of) Lagrangian tori:

Φ−1(p) = (union of) TN ,

ω|Φ−1(p) = 0.

Example: Let X be a (compact) toric variety of dimC = N with a

TN-invariant Kähler form. Then the moment map

Φ : X → RN = (Lie TN)∗

of the TN-action is a completely integrable system. ∆ := Φ(X) ⊂ RN

is a convex polytope, called the moment polytope of X.
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Example of Example: X = CP1 ∼= S2.

Φ : CP1 −→ R, [z0 : z1] 7−→
|z1|2

|z0|2 + |z1|2

C P1
[0; 1℄

C P 2 C P 1 � C P 1

Remark. In general, if p ∈ ∆ is a point in a k-dimensional face, then

Φ−1(p) ∼= T k.
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Flag manifolds

Flag manifold is a complex manifold defined by

Fln := {0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn | dimVi = i }
= U(n)/T,

where T ⊂ U(n) is a maximal torus. Fixing

λ = diag(λ1, . . . , λn), λ1 > λ2 > · · · > λn,

F ln is identified with the adjoint orbit of λ:

Fln
∼= Oλ =

{
x ∈ Mn(C)

∣∣∣ x∗ = x, eigenvalues = λ1, . . . , λn

}
[g] ↔ gλg∗

Oλ has a standard symplectic form:

ωλ := Kostant-Kirillov form (a U(n)-invariant Kähler form).
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Gelfand-Cetlin systems

For each x ∈ Oλ, set

x(k) = upper-left k × k submatrix of x,

λ
(k)
1 (x) ≥ · · · ≥ λ

(k)
k (x) : eigenvalues of x(k).

Theorem (Guillemin-Sternberg).

Φλ : Oλ −→ Rn(n−1)/2, x 7−→
(
λ
(k)
i (x)

)
k=1,...,n−1,
i=1,...,k

is a completely integrable system on (Fln, ωλ).

Φλ is called the Gelfand-Cetlin system. The image ∆λ = Φλ(Oλ) is

a convex polytope, called the Gelfand-Cetlin polytope.
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Example (the case of Fl3).

Φλ = (λ(2)
1 , λ

(2)
2 , λ

(1)
1 ) : Fl3 −→ R3.

Gelfand-Cetlin polytope ∆λ is:

�(2)2�(2)1�(1)1
Every fiber of an interior point is a Lagrangian T3.

The fiber of the vertex emanating four edges is a Lagrangian S3.
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Toric degeneration of flag manifolds

There exists a (singular) toric variety whose moment polytope is ∆λ.

We call this the Gelfand-Cetlin toric variety.

Theorem (Gonciulea-Lakshmibai, ...). There exists a flat family

f : X −→ S

of projective varieties such that X1 = f−1(s1) is Fln and a special

fiber X0 = f−1(s0) is the Gelfand-Cetlin toric variety.

Toric degeneration is given by deforming the Plücker embedding

Fln ↪→
n−1∏
i=1

P
( i∧

Cn
)
, (V1 ⊂ · · · ⊂ Vn−1) 7→ (

∧1V1, . . . ,
∧n−1Vn−1).
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Example (Toric degeneration of Fl3).

Fl3 =
{(

[z0 : z1 : z2], [w0 : w1 : w2]
)
∈ P2 × P2

∣∣∣∣ z0w0 = z1w1 + z2w2

}
.

Its toric degeneration is given by

X =
{(

[z0 : z1 : z2], [w0 : w1 : w2], t
) ∣∣∣∣ tz0w0 = z1w1 + z2w2

}
⊂ P2 × P2 × C

X1 =
{
z1w1 + z2w2 = z0w0

}
Flag manifold,

X0 =
{
z1w1 + z2w2 = 0

}
Gelfand-Cetlin toric variety.
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Toric degeneration of Gelfand-Cetlin systems
The Gelfand-Cetlin system can be deformed into the moment map

on the Gelfand-Cetlin toric variety in the following sense:

Theorem. There exist a path γ : [0,1] → S with γ(0) = s0, γ(1) = s1,

a map Φ̃ : X|γ([0,1]) → Rn(n−1)/2, and a flow ϕt : X1 → X1−t s.t.

• Φ0 := Φ̃|X0
is the moment map on X0 = f−1(γ(0)),

• Φ1 is the Gelfand-Cetlin system on X1 = Fln,

• Φt is a completely integrable system on Xt for each t,

• ϕt preserves the structure of completely integrable systems:

X1

Φ1 ""EE
EE

EE
EE

ϕ1−t // Xt

Φt||zz
zz

zz
zz

∆λ s0s1 tXt X0F ln SXj([0;1℄) e� Rn(n�1)=2
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Application to mirror symmetry

Mirror symmetry is a duality in string theory.
Mathematically: duality between symplectic geometry on X and
complex geometry on Y , and vice versa.

Mirror of a Fano manifold X: Landau-Ginzburg model (Y,F)
• Y is a non-compact complex manifold,
• F : Y −→ C is a holomorphic function (superpotential).

Example. Mirror of CP1 is given by

Y ∼= C∗, F(y) = y +
Q

y
,

where Q is a parameter.

Question: How to construct a L-G mirror (Y,F) geometrically for a
given Fano manifold X?
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Potential Function (Fukaya-Oh-Ohta-Ono)

Roughly speaking, potential function PO is a function on the space

of Lagrangian submanifolds given by

PO(L) =
∑

ϕ:D2→X holo.,
ϕ(∂D2)⊂L

e−Area(ϕ(D2)),

where Area(ϕ(D2)) =
∫
D2 ϕ∗ω is the symplectic area of ϕ(D2).

Example (CP1 case).

PO(L(u)) = e−Area(D1) + e−Area(D2)

= e−u + e−λ+u

= y +
Q

y
,

where y = e−u, Q = e−λ. u
L(u) (P1; �!FS)D1 D2� � = [0; �℄
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Toric Fano case:

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono).For a smooth toric Fano

manifold X, the potential function PO for Lagrangian torus fibers of

the moment map is calculated explicitly from combinatorial data of

the moment polytope. Moreover, PO gives the superpotential of the

Landau-Ginzburg mirror of X.

Flag case:

Using toric degeneration of the Gelfand-Cetlin system, we have:

Theorem. The potential function PO for Lagrangian torus fibers of

the Gelfand-Cetlin system is also calculated from ∆λ, and gives the

Givental’s superpotential of the mirror of Fln.
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More precisely: Suppose that the Gelfand-Cetlin polytope ∆λ is given

by linear inequalities ℓi(u) ≥ 0. Then the potential function PO :

Int∆λ → C is given by

PO(u) =
∑
i

e−ℓi(u).

Example (The case of Fl3).

PO = eu1−λ1 + e−u1+λ2 + eu2−λ2 + e−u2+λ3 + e−u1+u3 + eu2−u3

=
Q1

y1
+

y1

Q2
+

Q2

y2
+

y2

Q3
+

y1

y3
+

y3

y2
,

where yk = e−uk and Qj = e−λj.
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