Toric Degeneration of Gelfand-Cetlin Systems and Potential Functions

Yuichi Nohara Mathematical Department, Tohoku University

joint work with T. Nishinou and K. Ueda

Completely integrable systems

Let (X, ω) be a symplectic manifold of dimension 2N. A completely integrable system on (X, ω) is a set of N functions

$$\Phi = (f_1, \dots, f_N) : X \longrightarrow \mathbb{R}^N$$

satisfying

- Poisson commutativity: $\{f_i, f_j\} = 0$ for i, j = 1, ..., N, and
- Functional independence.

If $\omega = \sum_i dp_i \wedge dq_i$, the Poisson bracket is given by

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$$

Arnold-Liouville Theorem: If fibers of Φ are compact, general fibers are (union of) Lagrangian tori:

$$\Phi^{-1}(p) = (\text{union of}) T^N,$$

$$\omega|_{\Phi^{-1}(p)} = 0.$$

Example: Let X be a (compact) toric variety of $\dim_{\mathbb{C}} = N$ with a T^N -invariant Kähler form. Then the moment map

$$\Phi: X \to \mathbb{R}^N = (\text{Lie } T^N)^*$$

of the T^N -action is a completely integrable system. $\Delta := \Phi(X) \subset \mathbb{R}^N$ is a convex polytope, called the moment polytope of X.

Example of Example: $X = \mathbb{CP}^1 \cong S^2$.

$$\Phi: \mathbb{CP}^1 \longrightarrow \mathbb{R}, \quad [z_0:z_1] \longmapsto \frac{|z_1|^2}{|z_0|^2 + |z_1|^2}$$

Remark. In general, if $p \in \Delta$ is a point in a k-dimensional face, then

 $\Phi^{-1}(p) \cong T^k.$

Flag manifolds

Flag manifold is a complex manifold defined by

$$Fl_n := \{ 0 \subset V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n \mid \dim V_i = i \}$$
$$= U(n)/T,$$

where $T \subset U(n)$ is a maximal torus. Fixing

$$\lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n), \quad \lambda_1 > \lambda_2 > \cdots > \lambda_n,$$

 Fl_n is identified with the adjoint orbit of λ :

$$Fl_n \cong \mathcal{O}_{\lambda} = \left\{ x \in M_n(\mathbb{C}) \mid x^* = x, \text{ eigenvalues} = \lambda_1, \dots, \lambda_n \right\}$$
$$[g] \leftrightarrow g\lambda g^*$$

 \mathcal{O}_{λ} has a standard symplectic form:

 ω_{λ} := Kostant-Kirillov form (a U(n)-invariant Kähler form).

Gelfand-Cetlin systems

For each $x \in \mathcal{O}_{\lambda}$, set

 $x^{(k)} =$ upper-left $k \times k$ submatrix of x, $\lambda_1^{(k)}(x) \ge \cdots \ge \lambda_k^{(k)}(x)$: eigenvalues of $x^{(k)}$.

Theorem (Guillemin-Sternberg).

$$\Phi_{\lambda}: \mathcal{O}_{\lambda} \longrightarrow \mathbb{R}^{n(n-1)/2}, \quad x \longmapsto \left(\lambda_{i}^{(k)}(x)\right)_{\substack{k=1,\dots,n-1,\\i=1,\dots,k}}$$

is a completely integrable system on (Fl_n, ω_λ) .

 Φ_{λ} is called the Gelfand-Cetlin system. The image $\Delta_{\lambda} = \Phi_{\lambda}(\mathcal{O}_{\lambda})$ is a convex polytope, called the Gelfand-Cetlin polytope.

Example (the case of Fl_3).

$$\Phi_{\lambda} = (\lambda_1^{(2)}, \lambda_2^{(2)}, \lambda_1^{(1)}) : Fl_3 \longrightarrow \mathbb{R}^3.$$

Gelfand-Cetlin polytope Δ_{λ} is:

Every fiber of an interior point is a Lagrangian T^3 . The fiber of the vertex emanating four edges is a Lagrangian S^3 .

Toric degeneration of flag manifolds

There exists a (singular) toric variety whose moment polytope is Δ_{λ} . We call this the Gelfand-Cetlin toric variety.

Theorem (Gonciulea-Lakshmibai, ...). *There exists a flat family*

 $f:\mathfrak{X}\longrightarrow S$

of projective varieties such that $X_1 = f^{-1}(s_1)$ is Fl_n and a special fiber $X_0 = f^{-1}(s_0)$ is the Gelfand-Cetlin toric variety.

Toric degeneration is given by deforming the Plücker embedding

$$Fl_n \hookrightarrow \prod_{i=1}^{n-1} \mathbb{P}\left(\bigwedge^i \mathbb{C}^n\right), \quad (V_1 \subset \cdots \subset V_{n-1}) \mapsto (\bigwedge^1 V_1, \ldots, \bigwedge^{n-1} V_{n-1}).$$

Example (Toric degeneration of Fl_3).

$$Fl_3 = \left\{ \left([z_0 : z_1 : z_2], [w_0 : w_1 : w_2] \right) \in \mathbb{P}^2 \times \mathbb{P}^2 \mid z_0 w_0 = z_1 w_1 + z_2 w_2 \right\}.$$

Its toric degeneration is given by

$$\begin{aligned} \mathfrak{X} &= \left\{ \left([z_0 : z_1 : z_2], [w_0 : w_1 : w_2], \mathbf{t} \right) \ \middle| \ \mathbf{t} z_0 w_0 = z_1 w_1 + z_2 w_2 \right\} \\ &\subset \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{C} \end{aligned}$$

$$X_{1} = \left\{ z_{1}w_{1} + z_{2}w_{2} = z_{0}w_{0} \right\}$$
 Flag manifold,
$$X_{0} = \left\{ z_{1}w_{1} + z_{2}w_{2} = 0 \right\}$$
 Gelfand-Cetlin toric variety.

Toric degeneration of Gelfand-Cetlin systems

The Gelfand-Cetlin system can be deformed into the moment map on the Gelfand-Cetlin toric variety in the following sense:

Theorem. There exist a path $\gamma : [0,1] \to S$ with $\gamma(0) = s_0$, $\gamma(1) = s_1$, a map $\widetilde{\Phi} : \mathfrak{X}|_{\gamma([0,1])} \to \mathbb{R}^{n(n-1)/2}$, and a flow $\phi_t : X_1 \to X_{1-t}$ s.t.

- $\Phi_0 := \widetilde{\Phi}|_{X_0}$ is the moment map on $X_0 = f^{-1}(\gamma(0))$,
- Φ_1 is the Gelfand-Cetlin system on $X_1 = Fl_n$,
- Φ_t is a completely integrable system on X_t for each t,
- ϕ_t preserves the structure of completely integrable systems:

Application to mirror symmetry

Mirror symmetry is a duality in string theory. Mathematically: duality between symplectic geometry on X and complex geometry on Y, and vice versa.

Mirror of a Fano manifold X: Landau-Ginzburg model (Y, \mathcal{F})

- Y is a non-compact complex manifold,
- $\mathcal{F}: Y \longrightarrow \mathbb{C}$ is a holomorphic function (superpotential).

Example. Mirror of \mathbb{CP}^1 is given by

$$Y \cong \mathbb{C}^*, \quad \mathcal{F}(y) = y + \frac{Q}{y},$$

where Q is a parameter.

Question: How to construct a L-G mirror (Y, \mathcal{F}) geometrically for a given Fano manifold X?

Potential Function (Fukaya-Oh-Ohta-Ono)

Roughly speaking, potential function \mathfrak{PO} is a function on the space of Lagrangian submanifolds given by

$$\mathfrak{PO}(L) = \sum_{\substack{\phi: D^2 \to X \text{ holo.}, \\ \phi(\partial D^2) \subset L}} e^{-\operatorname{Area}(\phi(D^2))},$$

where Area $(\phi(D^2)) = \int_{D^2} \phi^* \omega$ is the symplectic area of $\phi(D^2)$.

Toric Fano case:

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono). For a smooth toric Fano manifold X, the potential function \mathfrak{PO} for Lagrangian torus fibers of the moment map is calculated explicitly from combinatorial data of the moment polytope. Moreover, \mathfrak{PO} gives the superpotential of the Landau-Ginzburg mirror of X.

Flag case:

Using toric degeneration of the Gelfand-Cetlin system, we have:

Theorem. The potential function \mathfrak{PO} for Lagrangian torus fibers of the Gelfand-Cetlin system is also calculated from Δ_{λ} , and gives the Givental's superpotential of the mirror of Fl_n .

More precisely: Suppose that the Gelfand-Cetlin polytope Δ_{λ} is given by linear inequalities $\ell_i(u) \geq 0$. Then the potential function \mathfrak{PO} : Int $\Delta_{\lambda} \to \mathbb{C}$ is given by

$$\mathfrak{PO}(u) = \sum_{i} e^{-\ell_i(u)}$$

Example (The case of Fl_3).

$$\mathfrak{PO} = e^{u_1 - \lambda_1} + e^{-u_1 + \lambda_2} + e^{u_2 - \lambda_2} + e^{-u_2 + \lambda_3} + e^{-u_1 + u_3} + e^{u_2 - u_3}$$
$$= \frac{Q_1}{y_1} + \frac{y_1}{Q_2} + \frac{Q_2}{y_2} + \frac{y_2}{Q_3} + \frac{y_1}{y_3} + \frac{y_3}{y_2},$$

where $y_k = e^{-u_k}$ and $Q_j = e^{-\lambda_j}$.