The 1st GCOE International Symposium

"Weaving Science Web beyond Particle-Matter Hierarchy"

Emergence and Annihilation of Vortices for Ginzburg-Landau Equations

Fukushima University

Hironori Kasai

March 5 (Thu) - March 7 (Sat), 2009

Multimedia Education and Research Complex

(Kawauchi Campus of Tohoku University), Sendai

<u>Plan of This Talk</u>

- Ginzburg-Landau Equation
- Motivation (Emergence and Annihilation)
- On vortex solution
- Some Scenarios

1 Ginzburg-Landau equation

Model equation for

"Superconductivity" and "Phase transition"

Time Dependent Ginzburg-Landau Equation

$$\eta\psi_t = \Delta\psi + \kappa^2 (1 - |\psi|^2)\psi$$

Stationary Case :

$$0 = \Delta \psi + \kappa^2 (1 - |\psi|^2) \psi$$

O $\psi : \mbox{complex valued function}$

$$|\psi| = 1$$
::Superconducting state
 $\psi = 0$::Normal state

 $\eta,\kappa: {\rm positive\ constants}$

O Ginzburg-Landau Energy Functional

$$F(\psi) = ||\nabla \psi||^2 + \frac{\kappa^2}{2}||1 - |\psi|^2||^2$$

GL eq is derived from this Energy Functional

2 Example

2.1 Numerical Simulation

(A kind of) Discrete Variational Method

$$F(\psi) = ||\nabla \psi||^2 + \frac{\kappa^2}{2}||1 - |\psi|^2||^2$$

"Finite Difference scheme" +
"(modified) Steepest Descent Method"
[Structure Preserving]

2.2 Emergence of a pair of Vortices

Domain
$$\Omega$$
: $[0,1] \times [0,2]$
BC : $\psi(x,0) = \psi(x,2) = e^{(6i\pi x)}$
+periodic
IC : $\psi_0(x,y) = e^{(6i\pi x)}$

O

ð

(End)

2.3 Annihilation

Domain : $\Omega_1 \setminus \Omega_2$ $= [0,1] \times [0,1] \setminus [0.3,0,7] \times [0.3,0.7]$ BC: $e^{(2i\theta_1)}$ on $\partial\Omega_2$, $e^{(3i\theta_2)}$ on $\partial\Omega_1$ $\theta_1 = atan((y - 0.49)/(x - 0.51)),$ $\theta_2 = atan((y - 0.51)/(x - 0.49))$ A pair of vortices collide each other \rightarrow No vortices.

1 -1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

(End)

We want to understand these phenomena.

3 Vortex Solution

Vortex Solution:Solution with zero points O Why zero "point" in 2D case? Take $\psi = u + iv$ (u, v:real valued), then GL equation is....

$$\begin{cases} \Delta u + \kappa^2 (1 - |\psi|^2) u = 0\\ \Delta v + \kappa^2 (1 - |\psi|^2) v = 0 \end{cases}$$

2D case: the set $\{\psi=0\}$ is intersection of zero level sets $\{u=0\}, \{v=0\} \rightarrow \text{vortex points}$

degree of the vortex point

[Definition]

$$deg(g, \partial B_{\varepsilon}(z_j)) \equiv \frac{1}{2\pi} \oint_{\Gamma} g \times g_{\theta} d\theta$$

 θ : anticlockwise direction

Known results

[Bethuel, Brezis, Helein]

 $\boldsymbol{\Omega}$ is simply connected and starshaped

$$\Delta \psi + \kappa^2 (1 - |\psi|^2) \psi = 0$$
 in Ω
 $\psi = g$ on $\partial \Omega$, $\deg(g, \partial \Omega) = d$

Then, there are d vortices with +1 degree.

O Breaking Condition "simply connected" ex.[Berlyand,Mironescu] Ω, ω : Simply Connected ($\omega \subset \Omega$) and not thin domain [H^1 -capacity $Cap(\Omega \setminus \omega) < \pi$]

$$egin{aligned} &\Delta\psi+\kappa^2(1-|\psi|^2)\psi=0 & ext{ in }\Omegaackslash \omega \ &\psi=g & ext{ on }\partial\Omegaackslash\omega, deg(g,\partial\Omega)=1, \ deg(g,\partial\omega)=1. \end{aligned}$$

There exists a solution with two vortices, one's degree is +1, the others degree is -1.

4 Scenarios

4.1: Annihilation of vortices

A pair of vortices which has degree +1 and -1 collide each other \longrightarrow No vortices.

"Disapperance of intersection of two zero level sets"

° ____

° ____

° ____

° ____

° ____

(End)

[observation]

The behaviour of a zero level set

in 2D scalar heat equation:

The velocity of a point in zero level set $\mathbf{x}(t)$ is

$$\eta \frac{d}{dt} \mathbf{x} \cdot \nabla u = -\Delta u \implies \frac{d}{dt} \mathbf{x} \cdot \mathbf{n} = (-H + \frac{\nabla |\nabla u|^2}{|\nabla u|^2} \cdot \mathbf{n})/\eta$$

(*H*:the curvature, n:the unit normal vector) If $|\nabla u|^2$ is sufficiently large or flat on $\Gamma_u = \{u = 0\}$, Γ_u behave like curvature flow. (As long as the area surrounded by Γ_u is not small, $|\nabla u|^2$ is large on Γ_u .)

[Notation]

 $A_u(t)$: Domain serrounded by Γ_u , $A_v(t)$: Domain serrounded by Γ_v $\bar{\mathbf{x}}$:center of gravity of A_u $\bar{\mathbf{y}}$:center of gravity of A_v

(Special Case)

Proposition 1 Let A_u and A_v are convex, large domain.

If $\bar{\mathbf{x}} \notin A_v \ \bar{\mathbf{y}} \notin A_u$, there exist T > 0 s.t. a pair annihilation occur at t=T.

Note: In 3D case, this corresponds to disappearance of vortex ring.

Sketch of the Proof

Since, it is difficult to detect correct zero level set, we prepare the approximated area $|A_{\varepsilon}|$ and center

of gravity
$$\bar{\mathbf{x}}_{\varepsilon}$$
 of A_{ε} .
 $\chi_{\varepsilon} \equiv (1 + \frac{u}{\sqrt{u^2 + \varepsilon^2}})/2$
 $|A_{\varepsilon}(t)| = \int_{\mathbf{R}^2} \chi_{\varepsilon} dx$
 $\bar{\mathbf{x}}_{\varepsilon}(t) = \int_{\mathbf{R}^2} \mathbf{x} \chi_{\varepsilon} dx / |A_{\varepsilon}(t)|$
 $\tilde{\mathbf{x}}_{\varepsilon}(t)$: center of gravity of Γ_u

$$\frac{d}{dt}|A_{\varepsilon}(t)| = \int_{\mathbf{R}^2} (1 - \chi_{\varepsilon}^2) \frac{u_t}{\sqrt{u^2 + \varepsilon^2}} dx < 0$$
$$\frac{d}{dt} \bar{\mathbf{x}}_{\varepsilon}(t) = \int_{\mathbf{R}^2} (1 - \chi_{\varepsilon}^2) \frac{\mathbf{x} - \bar{\mathbf{x}}_{\varepsilon}}{|A_{\varepsilon}|} \frac{u_t}{\sqrt{u^2 + \varepsilon^2}} dx$$

 $\frac{d}{dt}\bar{\mathbf{x}}_{\varepsilon}(t)$ is much smaller than $\frac{d}{dt}|A_{\varepsilon}(t)|$.

$$\frac{d}{dt}\bar{\mathbf{x}}_{\varepsilon}(t)\bigg|\sim \frac{|\tilde{\mathbf{x}}_{\varepsilon}-\bar{\mathbf{x}}_{\varepsilon}|}{|A_{\varepsilon}|}\left|\frac{d}{dt}|A_{\varepsilon}(t)|\right|$$

So there exist T>0 s.t. $A_u(t)\cap A_v(t)=\emptyset$, t>T

4.2 Emergence of Vortices

Since $|\nabla u|$ tend to be large on zero level set,

the zero level set(curve) should be short.

 $\implies \begin{cases} Shortening like curvature flow \\ Reconnection \end{cases}$

(End)

Thank you for your attention.