

T.J. Watson Research Center

Optimizing Graphene Morphology on SiC(0001)

James B. Hannon Rudolf M. Tromp

The 1st GCOE International Symposium, Tohoku University, March 5, 2009

© 2009 IBM Corporation



## **Graphene sheets**

- Graphene sheets can be formed into 0D,1D, 2D, and 3D structures
- Chemically inert
- Intrinsically high carrier mobility
- Interesting physics see next talk!



Geim, Novoselov, Nature Mater, 6, 183 (2007)



#### Electronic structure of graphene



Min, "Electron Structure of Graphene" (2006)



# **Dirac Point**



Linear dispersion relation, vanishing density of states at  $E_F$ 

M. Wilson, Physics Today, Jan 2006



## Graphene FET (2D, without gap, ballistic)





#### Current modulation linked to density of states





## Graphene for high-performance electronics

- High carrier mobility 200,000 cm<sup>2</sup>/Vs demonstrated (Si < 2000 cm<sup>2</sup>/Vs)
- Same effective mass for electrons and holes identical *p* and *n* type FET characteristics
- Compatibility with conventional Si technology
- Band gap engineering



P. Kim, "Electron transport in graphene" (2008)



# Challenges for synthesizing high-quality material:

- Need to synthesize large graphene domains
  Need to maintain a <u>flat</u> SiC substrate during synthesis
  Control <u>nucleation</u> of graphene domains to prevent domain boundaries
- Need to synthesize films of uniform thickness in a controlled manner Control the <u>step density</u> on SiC substrate (decomposition is easier at steps)
- Need to maintain electrical properties of the SiC substrate
  High performance devices require low-loss substrate (especially for RF applications)
  Prevent generation of bulk defects
  Understand and control how substrate <u>dopes</u> graphene



## Low-energy electron microscopy

- Real-time *in situ* imaging Growth, etching, oxidation, sublimation
- Chemical, structural, magnetic contrast
  Low energy electrons (0-100 eV) = surface sensitivity
  Contrast mechanisms are similar to those used in TEM
- Ideal for direct modeling of surface structure evolution "Local" rather than "average"
- Real-space & reciprocal space
  5 nm spatial resolution



LEEM review:E. Bauer, Rep. Prog. Phys. <u>57</u> (1994) 895IBM LEEM:R.M. Tromp et al., Surface Reviews and Letters <u>5</u> (1998) 1189



# Advantages of LEEM for investigations of graphene

- Phase identification (e.g. graphene, buffer layer, bilayer stacking)
  Spatially-resolved diffraction, dark-field imaging
- Graphene layer thickness is easy to measure Quantum well states: Hibino *et al*, PRB 77 (2008) 075413
- Atomic structure (e.g. stacking of SiC bilayers in the bulk) and stoichiometry Quantitative analysis of reflectivity (e.g. image intensity) versus electron beam energy
- Step motion / surface smoothing
  Domain and island coarsening, island growth, step smoothing
- Local electronic structure can be measured
  Spatially-resolved photoemission, electron-energy loss spectroscopy (plasmons)



# SiC(0001) Surface Structure Taxonomy

- Clean SiC surface by exposing to Si in ultra-high vacuum (Si +  $O \rightarrow SiO$ )
- A well-defined sequence of surface phases forms as temperature is raised
- Si-rich phases give way to C-rich phases at high temperature



Forbeaux et al, PRB 58 (1998) 16396.



## The kinetics of graphene formation in UHV

- Above ~1100 °C, SiC decomposes in UHV.
- Liberated Si evaporates, C condenses into the graphene structure
- First graphene-like layer ("buffer layer") is covalently bound to substrate Electronic structure is not like graphene





# Initial formation of buffer layer from the $\sqrt{3}$ phase (1060 °C)

- √3 steps are eaten away terraces are intact.
- √3 steps decompose in units of three SiC bilayers
- 'ribbon' of buffer layer nucleates at the lower sides of steps.
- Buffer layer islands seen on the terrace, indicating that C atoms can freely diffuse







Hannon & Tromp, PRB 77, 241404R 2008



# Further annealing – buffer layer grows, $\sqrt{3}$ steps decay

- $\sqrt{3}$  steps flow <u>through</u> gaps in the buffer layer domain structure
- This 'up-hill' step migration leads to pit formation





# The pits can be ~ 100 Å deep





Si

## Step morphology suggests a model

- Buffer layer grows at the expense of √3 steps, which easily decay
- Buffer layer is immobile at 1060 C no coarsening Makes sense – it's basically graphene
- Frustrated state, with <u>no √3 steps</u>, is reached at about 50/50 coverage
- What happens next ?!



 $\sqrt{3}$  $6\sqrt{3}$ 

t₁

 $t_2 > t_1$ 

 $t_3 > t_2$ 

The 1st GCOE International Symposium, Tohoku University, March 5, 2009



## A fundamental problem

- Buffer layer grows at expense of  $\sqrt{3}$  steps. Terraces remain intact at 1060 °C.
- Buffer layer is very stable it does not coarsen at 1100 °C √3 steps flow around pre-existing 6√3 domains
- Incomplete step coverage of buffer layer enhances pit formation
- Difficult to grow flat, thin (1 ML) graphene films by slowly heating in UHV.