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Graphene sheets

● Graphene sheets can be formed into 
0D,1D, 2D, and 3D structures

● Chemically inert

● Intrinsically high carrier mobility

● Interesting physics – see next talk!

Geim, Novoselov, Nature Mater, 6, 183 (2007)
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Electronic structure of graphene

Min, “Electron Structure of Graphene” (2006)
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Dirac Point

M. Wilson, Physics Today, Jan 2006

Linear dispersion relation, vanishing density of states at EF
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Graphene

Graphene FET (2D, without gap, ballistic)
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Current modulation linked to density of states
Graphene
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Graphene for high-performance electronics

● High carrier mobility – 200,000 cm2/Vs demonstrated (Si < 2000 cm2/Vs)
● Same effective mass for electrons and holes

identical p- and n- type FET characteristics
● Compatibility with conventional Si technology
● Band gap engineering

P. Kim, “Electron transport in graphene” (2008)
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Challenges for synthesizing high-quality material:

● Need to synthesize large graphene domains
Need to maintain a flat SiC substrate during synthesis
Control nucleation of graphene domains to prevent domain boundaries

● Need to synthesize films of uniform thickness in a controlled manner
Control the step density on SiC substrate (decomposition is easier at steps)

● Need to maintain electrical properties of the SiC substrate
High performance devices require low-loss substrate (especially for RF applications)
Prevent generation of bulk defects
Understand and control how substrate dopes graphene
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Low-energy electron microscopy

● Real-time in situ imaging
Growth, etching, oxidation, sublimation

● Chemical, structural, magnetic contrast
Low energy electrons (0-100 eV) = surface sensitivity
Contrast mechanisms are similar to those used in TEM

● Ideal for direct modeling of surface structure evolution
“Local” rather than “average”

● Real-space & reciprocal space
5 nm spatial resolution

LEEM review: E.  Bauer, Rep. Prog. Phys. 57 (1994) 895
IBM LEEM: R.M. Tromp et al., Surface Reviews and Letters 5 (1998) 1189
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Advantages of LEEM for investigations of graphene

● Phase identification (e.g. graphene, buffer layer, bilayer stacking)
Spatially-resolved diffraction, dark-field imaging

● Graphene layer thickness is easy to measure
Quantum well states: Hibino et al, PRB 77 (2008) 075413

● Atomic structure (e.g. stacking of SiC bilayers in the bulk) and stoichiometry
Quantitative analysis of reflectivity (e.g. image intensity) versus electron beam energy

● Step motion / surface smoothing
Domain and island coarsening, island growth, step smoothing

● Local electronic structure can be measured
Spatially-resolved photoemission, electron-energy loss spectroscopy (plasmons)
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SiC(0001) Surface Structure Taxonomy

● Clean SiC surface by exposing to Si in ultra-high vacuum (Si + O → SiO)

● A well-defined sequence of surface phases forms as temperature is raised

● Si-rich phases give way to C-rich phases at high temperature

SiC(0001)

3 × 3

850 °C

SiC(0001)

“1 × 1”

950 °C

SiC(0001)

√3 × √3

1050 °C

Si rich

SiC(0001)
buffer layer
graphene

graphene

1200 °C

SiC
buffer layer

SiC(0001)
buffer layer

6√3 × 6√3

1075 °C

C rich

Forbeaux et al, PRB 58 (1998) 16396.
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The kinetics of graphene formation in UHV

● Above ~1100 °C, SiC decomposes in UHV.

● Liberated Si evaporates, C condenses into the graphene structure

● First graphene-like layer (“buffer layer”) is covalently bound to substrate
Electronic structure is not like graphene

SiC(0001)

√3 × √3

1050 °C

Si rich

SiC
buffer layer

SiC(0001)
buffer layer

6√3 × 6√3

1075 °C

C rich
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Initial formation of buffer layer from the √3 phase (1060 °C)

AFM image of starting surface – 3 bilayer steps

● √3 steps are eaten away –
terraces are intact.

● √3 steps decompose in units 
of three SiC bilayers

● ‘ribbon’ of buffer layer 
nucleates at the lower sides 
of steps.

● Buffer layer islands seen on 
the terrace, indicating that C 
atoms can freely diffuse

18 eV BF LEEM image
Hannon & Tromp, PRB 77, 241404R 2008 Buffer

layer
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Further annealing – buffer layer grows, √3 steps decay

● √3 steps flow through gaps in the buffer layer domain structure
● This ‘up-hill’ step migration leads to pit formation

5.3 eV
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The pits can be ~ 100 Å deep
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Step morphology suggests a model

● Buffer layer grows at the expense of √3 steps, 
which easily decay

● Buffer layer is immobile at 1060 C – no coarsening
Makes sense – it’s basically graphene

● Frustrated state, with no √3 steps, is reached at 
about 50/50 coverage

● What happens next ?! t3 > t2

t2 > t1

t1

...you nucleate a (3 bilayer deep) pit
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A fundamental problem

● Buffer layer grows at expense of √3 steps.  Terraces remain intact at 1060 °C.

● Buffer layer is very stable – it does not coarsen at 1100 °C
√3 steps flow around pre-existing 6√3 domains

● Incomplete step coverage of buffer layer enhances pit formation

● Difficult to grow flat, thin (1 ML) graphene films by slowly heating in UHV.


