Cosmological constraints from weak lensing, SNIa, and CMB, and Bayesian model selection

Martin Kilbinger Institut d'Astrophysique de Paris France

Institut d'Astrophysique de Paris

1st GCOE International Symposium Sendai, Japan

March 5 - 7, 2009

Tohoku University GCOE program "Weaving Science Web beyond Particle-Matter Hierarchy" http://www.scienceweb.tohoku.ac.jp/

Outline

- Cosmology from Cosmic Microwave Background, weak gravitational lensing, and Supernovae type la
- Systematics in SNIa: photometric accuracy, dust reddening
- Model selection and Bayesian evidence
- A new method to sample the parameter space and compute the Bayesian evidence
- Results for model selection

Questions in cosmology

- How did the Universe begin, how does it evolve?
- What is it made of?
- How do structures form? (Dark matter, halos, galaxies, ...)

Composition of the Universe

density parameters $\Omega_i \equiv \rho_i / \rho_c$ critical density: $\rho_c = 3H_0^2 / (8\pi G) = 10^{-29} \text{ g cm}^{-3}$ total matter density: $\Omega_m = \Omega_{cdm} + \Omega_b$ Dark energy or cosmological constant? $w = p/(\rho c^2)$ $w \neq -1$ w = -1

Structure formation

- Structure formation on large scales depends on cosmological parameters
- Structures consist mainly (80%) of invisible dark matter
- Galaxies as dark-matter tracers requires complex physics

Cosmic Microwave Background (CMB)

400

800

2π [μK²

l(*l*+1)C_{*µ*}

4000

2000

0

10

40

100

200

Multipole moment l

Angular power spectrum (WMAP5)

Gravitational lensing as probe of the large-scale structure

- Light from distant galaxies is continuously deflected along its path through the inhomogeneous Universe
- Light bundles are differentially 'lensed' by tidal matter field
- Galaxy images are coherently distorted → shape correlations, depending on statistical properties of (projected) large-scale structure

'Cosmic shear'

Weak cosmological lensing ...

- probes structures @ z=0.3 ... 1, where accelerated expansion sets in
- probes both growth of structure and geometry of Universe → can distinguish between modified gravity and dark energy

Weak lensing observations

- Gravitational lensing effect much smaller than intrinsic galaxy shapes or instrumental/atmospheric distortions
- Need to estimate accurate shapes of millions of galaxy images

Weak lensing data

- Canada-France Hawaii Telescope (CFHT):
 3.6m telescope
 MegaCam: 1 deg² field of view (4x full moon)
- Legacy Survey (LS): 500 nights (2003-2008), five optical bands, final area 170 deg²
- 3rd data release: 57 deg², 2 million galaxies, only one band

[Fu, Hoekstra, Semboloni, MK et al. 2008]

Weak lensing data

- Canada-France Hawaii Telescope (CFHT):
 3.6m telescope
 MegaCam: 1 deg² field of view (4x full moon)
- Legacy Survey (LS): 500 nights (2003-2008), five optical bands, final area 170 deg²

• 3rd data release: 57 deg², 2 million galaxies,

anly and	hand	1			1
SUPRIME-33	SUBARU/ Suprime	33 deg ²	R	R=26	2003-?
VIKING	VISTA/	1500 deg ²	zYJHK	i _{AB} =22.9	2007-2010
Dark Energy Survey	CTIO DECam	5000 deg ²	griz	i _{AB} =24.5	2009-2014
DarkCam	VISTA	$\sim \! 10,\! 000 \ deg^2$	ugriz	i _{AB} =24.	2010-2014
HyperCam	SUBARU/	$\sim 3500 \text{ deg}^2$	Vis.	?	>2012?
SNAP/JDEM	Space	100/1000/ deg ² 5000 deg ²	Vis.+NIR	-	>2013
DUNE	Space	$\sim \! 20000 \ deg^2$	ugriz+NIR?	i=25.5	\sim 2015?
LSST	Ground TBD	20000 deg ²	ugrizy	i _{AB} =26.5	>2014
Dome-C	SouthPole	? deg ²	?	?	~2012?

CFHTLS lensing data used for:

• Modified gravity:

Yukawa-, Uzan-Bernardeau potentials [Doré, Martig, Mellier, MK et al. 2009] no deviation from GR for 0.04 Mpc... 10 Mpc

Constraints on gravitational slip ($\psi \neq \phi$) [Daniel, Caldwell, Cooray & Melchiorri 2008] DGP models excluded at 2σ [Thomas, Abdalla & Weller 2008]

- Dark energy constraints [MK, Benabed, Guy, Astier et al. 2009, Wraith, MK, Benabed, Cappé et al. 2009]
 no deviation from Λ
- Neutrino masses [Tereno, Schimd, Uzan, MK et al. 2009, Ichiki, Takada & Takahashi 2009] $\sum m < 0.54 \text{ eV}$

Supernovae of type Ia (SNIa)

- SNIa are thermo-nuclear explosions of a white dwarf with 1.4 solar masses
- They are standard candles: having universal intrinsic luminosity, observed luminosity only depends on distance
- Distance as function of redshift depends on expansion history of Universe

SNIa data

- SNLS: Supernova Legacy Survey [Astier et al. 2006]
- 1st year data: 71 distant (+ 44 nearby SNe)
- Imaging: CFHT in 5 optical bands, 4 deg²
- Spectroscopy follow-up (for redshift, type): VTL, Gemini, Keck (8m class telescopes)

SNIa systematics: photometry

Joint constraints on dark energy

	CMB	SNIa	BAO	lens	Lyα	clust	gal	W
MK et al. 2009	Х	Х		х				-0.18 < 1+w < 0.12
Mantz et al. 2009	Х	Х	х			х		-0.08 < 1+w < 0.04 (68%)
Seljak et al. 2005	Х	Х			х		Х	-0.08 < 1+w < 0.10
Komatsu et al. 2008	Х	Х	х					-0.11 < 1+w < 0.14
Jarvis et al. 2006	Х	Х		х				-0.10 < 1+w < 0.27
Wang & Mukherjee 2006	Х	Х					Х	-0.17 < 1+w < 0.16

SNIa systematics: dust absorption

- Dust (in Milky Way, inter-galactic medium, SN host galaxy) absorbs light, SNIa dimmer, has to be corrected for
- More absorption at shorter wavelengths (bluer bands)
- Linear correction: Δ (brightness) = $\beta \times$ color β depends on dust properties
- Up to now:
 - color correction due to one dust comp.
 - inter-galactic medium neglected

[Menard et al. 2009]

SNIa systematics: dust absorption

- $\beta = 2.0 \dots 2.5$ up to now
- Menard et al. 2009:
 β_{IGM} = 4.9 ± 2.6
- Ignoring this dust component leads to shifts in cosmological parameters
- Δw = 0.02 0.03, 25% to 30% of statistical error
- In future:
 - corrrection object by object
 - infrared less affected

[Menard, MK, Scranton 2009]

Model selection

- Traditional parameter estimation:
 Q: For a specific model with *n* parameters which is the most likely (best-fit) parameter and confidence interval given the data?
- Model selection:
 Q: Which of two or more models with parameters n₁, n₂, ... is the most likely to fit the data?
- Examples in cosmology:
 - \star cosmological constant Λ vs. dark energy vs. modified gravity
 - ★ flat vs. curved
 - **★** Primordial fluctuations: scale-free ($n_s=1$) vs. $n_s=const$ vs. running $n_s(k)$
- Other applications (Cluster profile reconstruction, exo-planets, ...)

Bayesian evidence

0.5 ... 1

1...2

>2

3...10

10 ... 100

>100

substantial

strong

decisive

$$\frac{p(m_1|d)}{p(m_2|d)} = B_{12} \frac{\pi(m_1)}{\pi(m_2)}$$

Approximations to the Evidence

BIC (Bayesian Information Criterion) [Schwarz 1987]

(Similar: AIC, DIC) Problem: Penalty independent whether parameters constrained by data or not

• Laplace approximation: likelihood Gaussian, priors large and uniform [Lazarides, Ruiz de Austri & Trotta 2004, Heavens, Kitching & Verde 2007]

Laplace: prios might be small (physical parameter boundaries)

Fisher matrix not good approx.

Monte-Carlo methods

• MCMC?

Chain stays around high-likelihood, large regions of parameter space undersampled.

- New method: PMC (Population MonteCarlo) [Cappé et al. 2004, 2007; Wraith, MK et al. 2009]
- Efficient integration over posterior:

$$\int d^{n}\theta h(\theta) \mathcal{L}(\theta)\pi(\theta) \qquad \qquad h(\theta) = 1: \quad \text{evidence} \\ h(\theta) = \theta: \quad \text{mean} \\ h(\theta) = 1_{68\%}: \quad \text{confidence region} \end{cases}$$

Importance sampling

• Rewriting the integral:

$$\int d^{n}\theta h(\theta) \mathcal{L}(\theta) \pi(\theta) = \int d^{n}\theta h(\theta) \frac{\mathcal{L}(\theta)\pi(\theta)}{G(\theta)} G(\theta)$$
 importance weights
$$= \frac{1}{N} \sum_{\theta_{i} \sim G} h(\theta_{i}) \frac{\mathcal{L}(\theta_{i})\pi(\theta_{i})}{G(\theta_{i})} = \sum_{\theta_{i} \sim G} h(\theta_{i}) \overline{w}_{i}$$

• G: Proposal distribution, easy to sample from (mixtures of Gauss, Student-t, ...)

Population MonteCarlo (PMC)

- Importance sampling performs poorly if proposal far from posterior
- Solution: adaptive importance sampling aka Population MonteCarlo [Cappé et al. 2004, 2007]
- Iterative update of proposal G_i -> G_{i+1}
- Stop iterations when proposal and posterior 'close enough': Kullback-Leibler divergence

$$K = \int \mathrm{d}^{n}\theta \, \log\left[\frac{\mathcal{L}(\theta)\pi(\theta)}{G(\theta)}\right] \mathcal{L}(\theta)\pi(\theta)$$

$$K = \int \log \left[\frac{\mathcal{L}(\theta) \pi(\theta)}{G(\theta)} \right] \frac{\mathcal{L}(\theta) \pi(\theta)}{G(\theta)} G(\theta) d\theta \approx \sum_{\theta_i \sim G} \log[\bar{w}_i] \bar{w}_i$$

PMC Performance

• Perplexity $p = \exp[-K]/N; \ p = 0 \dots 1$

10 iterations

CMB+SNIa+BAO: Dark energy, curvature

• Base model: flat Λ CDM, n_{par}=3 (Ω_m , Ω_b , h) Data: pure geometrical probes (WMAP5 distance priors, SNIa, BAO)

CMB+SNIa+BAO: Primordial perturbations

Summary & Conclusions

- Need multi-probe experiments to probe recent accelerated expansion of the Universe
 - ★ Control of systematics (e.g. dust absorption in SNIa, need large-scale structure observations)
 - ★ Distinguish between MoGR and dark energy
- Bayesian evidence
 - ★ powerful method to compare models
 - ★ important to design future experiments

