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Gamma-ray spectroscopy of  11
ΛB and 12

ΛC 
  

K. Hosomi for KEK-E566 collaboration 
Department of Physics, Tohoku University 
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  ΛN interaction
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  KEK-E566 experiment

3. Data analysis

4. Results 5. Discussion 

Study of the ΛN interaction is the first step toward the unified understanding of general 
baryon-baryon interactions beyond the well-known NN interaction. Since ΛΝ scattering  
experiments are quite difficult due to the short lifetime (263 ps) of a Λ hyperon, structure of 
Λ hypernuclei give us almost unique information of the ΛN interaction. 

  Hypernuclear structure
A weak-coupling scheme is a assumed that a 
hypernucleus consists of two components, a Λ hyperon 
and the remaining “core” nucleus, and the Λ hyperon 
does not change the structure of the core nucleus. In this 
scheme, non-zero-spin states of a core nucleus split into 
spin-doublet states with Λ inclusion as shown in Fig. 1. 
The energy spacing of the doublet states is determined 
only by the spin-dependent part of the ΛN interaction. 
Because the doublet spacing is typically of the order of 
100 keV, a γ-ray spectroscopy method using germanium 
(Ge) detectors with a few keV resolution is essential to 
resolve their splitting. 
 From the previous results of a series of γ-ray 
spectroscopy experiments, it is proposed that energy 
shifts of hypernuclear levels due to the coupling between 
the ΛN and ΣN channels (ΛN-ΣN coupling) are important 
to generally understand the spin-dependent part of the ΛN 
interaction in p-shell hypernuclei, which have p-shell 
core nuclei. Fig. 2 shows the important diagram for ΛNN 
three-body interaction caused by ΛN-ΣN coupling.

Fig. 1: Low-lying hypernuclear levels. 

The KEK-E566 experiment was performed at KEK-PS K6 beam line in 2005 in order to 
investigating the ΛN interaction in p-shell hypernuclei including the effect of ΛN-ΣN 
coupling. In this experiment, 11

ΛΒ and 12
ΛC hypernuclei were produced via the 12C(π+, Κ+) 

reaction with the beam momentum of 1.05 GeV/c.

  K6 beam line and SKS spectrometer 

Fig. 3: Schematic view of experimental setup.  
  Hyperball2

γ - r ays emi t t ed fo rm p roduced 
hypernuclei were detected by using a 
Ge detector array called Hyperball2, 
which was installed around the 
experimental target. As shown in Fig. 4, 
Hyperball2 has a total of 14 single-type 
Ge detectors and 6 clover-type Ge 
detectors, each of which is surrounded 
by Bi4Ge3O12 scintillation counters in 
order to suppress background signals 
mainly caused by Compton scattering. 
 The in-beam energy resolution and 
photo-peak efficiency were 5.4 keV 
(FWHM) and 2.3 % at 1.33 MeV, 
respectively.

Fig. 4: Schematic view of Hyperball2.  
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The primary proton beam is accelerated by KEK 
12-GeV PS and irradiated on a production target 
located at the most upstream of the K6 beam 
line. The produced secondary pion beam is 
transported to the experimental target. Fig. 3 
shows the whole schematic view of the 
experimental setup.  
  The pion beam momentum is analyzed by the 
beam line spectrometer which consists of 
QQDQQ magnets, tracking chambers and timing 
counters. The scattered kaons are identified and 
momentum analyzed by the SKS spectrometer 
which consists of the SKS magnet, tracking 
chambers and timing counters. 

Fig. 2: ΛNN three-body diagram 
 for ΛN-ΣN coupling channel.  
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Fig. 8: Low-lying level schemes of 11
ΛΒ and 12

ΛC and of their core nuclei. γ-ray transitions observed 
in the KEK-E566 experiment are indicated by arrows, and determined level energies are also shown.  

  Missing mass spectrum
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Fig. 5: Missing mass spectrum in the 12C(π+, Κ+) reaction.  

The mass of a produced hypernucleus (MHY) is obtained as a missing 
mass in the (π+, Κ+) reaction by calculating the above equation in the 
laboratory frame, where Eπ and pπ are the energy and the momentum of 
the pion, EK and pK are those of the kaon, Mtarget is the mass of target 
nucleus (12C), and θπK is the reaction angle. Then, the missing mass can 
be converted to the Λ binding energy (BΛ) by subtracting the mass of 
the core nucleus (11C) and a Λ hyperon. Fig. 5 shows the obtained 
missing mass spectrum.

  γ-ray spectrum for 11
ΛΒ

C
ou

nt
s/

2 
ke

V

0

200

400

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

C
ou

nt
s/

ke
V

480 490 500 510 520 530

50

100

150

200

50

100

150

200

0

0

Eγ (keV) Eγ (keV)

A

B

A

B

e+
e–  (

 5
11

 )

74
G

e 
( 

59
6 

)
10

B
 (

 7
18

 )
56

Fe
 (

 8
47

 )

(264)

(503)

(1483)

Fig. 6: “A” indicates the γ-ray spectrum for the events of 
11
ΛΒ production. The events are corresponding to the pΛ 

region in the missing mass, where a Λ hyperon occupies 
the p orbit.  

  γ-ray spectrum for 12
ΛC

The 11
ΛΒ hypernucleus was populated via the one 

proton mission from pΛ states of 12
ΛC. By selecting 

the pΛ region in the missing mass spectrum, we 
observed three γ-ray peaks associated to 11

ΛΒ as 
shown in Fig. 6. In Fig. 6, right figures are the 
enlarged views of the left figures around 511-keV 
annihilation peak.
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Fig. 7: γ-ray spectra for the 
events corresponding to the 
sΛ region in the missing mass, 
where a Λ hyperon occupies 
the s orbit.  

Four γ-ray peaks associated to 12
ΛC were identified by 

selecting the sΛ states region in the missing mass spectrum 
as shown in Fig. 7. Except for the 161-keV peak, Doppler-
shift correction is necessary to observed as a sharp peak. 
The Doppler correction was applied event-by-event by the 
following equation 
 
 
 
,where β is the velocity of a recoiling hypernucleus, and φ 
is the angle between the direction of β and γ-ray emission

Ecorrected
γ =

1
√

1− β2
· (1− β cosφ) · Emeasured

γ

Δ = 0.43 or 0.33, SΛ = −0.02, SN = −0.4, T = 0.03 MeV

In the p-shell hypernuclei, the spin-dependent interactions are represented by the 
four parameters as above, where Δ, SΛ, SN and T denote the radial integrals of the 
effective sΛpN interactions for the spin-spin, Λ-spin-dependent spin-orbit, nucleon-
spin-dependent spin-orbit and tensor components, respectively. The quoted values 
are suggested by D. J. Millener based on previous results. The energy spacing of 
two hypernuclear levels are generally described by linear combinations of these 
parameters and the strength of ΛN-ΣN coupling. The NSC97f interaction of the 
Nijmegen models is assumed for estimating the effect of ΛN-ΣN coupling. 
  The measured spin-doublet spacings of 11

ΛΒ(3/2+, 1/2+), 11
ΛΒ(7/2+, 5/2+) and 

12
ΛC(21

-, 11
-) are well explained by these parameters. The present experimental 

results favors the NSC97f interaction for ΛN-ΣN coupling.
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Λ photoproduction on a deuteron at threshold energies. 
B. Beckford for NKS2 collaboration, Dept. of Physics, Tohoku University   

N(γ, K0) Λ reaction in the threshold region 

Experimental Apparatus 

  Experiment performed with NKS2+ at the ELPH research facility 
using tagged photon beams on D2 target. 

  Λ momentum distribution was obtained for two photon energy 
region, 0.9 to 1.0 GeV and 1.0 to 1.08 GeV. 

  Λ angular distribution for five energy bins 
  First reported data 
  Peaks at small angles 
  NKS2+ can approximately measure total cross sections 

  Λ excitation function at forward hyperon angle derived. 
  New data on excitation curves 

  Λ polarization for three energy. 

  Recoil polarization is negative at Eg< 1.0 

  Theory Comparison 

  Saclay Lyon A rK1Kγ = -(1.4-1.5) and Regge-Plus-Resonace 
provides a good agreement with data. 

  Kaon-MAID underestimates all data.   

Summary Momentum Distribution 

Strangeness photoproduction 

solid lines : Kaon-MAID [T. Mart and C. Bennhold, Phys. Rev. C 61 012201(R) (1999)] 
         data :  

SAPHIR(98) [M. Q. Tran et al., Phys. Lett B445, 20 (1998)] 
                          [S. Goers et al., Phys. Lett B445, 20 (1998)] 
SAPHIR(04) [K. –H. Glander et al., Eur. Phys. J. A 19, 251 (2004) 
                          [R. Lawall et al., Eur. Phys. J. A 24, 275 (2005) 
CLAS            [R. Bradford et al.(CLAS Collaboration), Phys. Rev. C 73, 035202 (2006)] 

Total cross section for kaon photo-production 

• Photon Energy Dependent Integrated Cross Section 
• Kaon-MAID and Saclay Lyon A Isobar Models 

 Λ Event Distribution 

PID for two charged particle track events with  
opening angle and vertex in target region 
 

•  Energy Region               0.8 - 1.1 GeV 
          n(γ, K0)Λ threshold  (915 MeV) 

•  Energy Resolution         10 MeV 
•  Beam Intensity               2 × 10 6 Hz 
•  Duty Factor                    35 - 85 %  

STB Tagger System 

NKS2+ Upgrade Setup 

1 m γ beam 

Tagged photon beam      
NKS2+ is installed at the Research 
Center for Electron Photon Science 
(ELPH-Tohoku). 

The photon beam is generated via 
bremsstrahlung and the scattered 
electron’s energy is tagged by STB-
Tagger system.  

•  Liquid D2 or H target: 
•  Magnetic spectrometer 

•  Hodoscopes: 

• Time of Fight (TOF)  
•  Particle Tracking: 

• Pair of Drift Chambers: CDC and VDC 
• Momentum, trajectory, decay vertex 

Strangeness production on a nucleon or a nucleus by the electromagnetic interaction 
provides invaluable information on the strangeness production mechanism and 
strengths of meson-hadron coupling constant. Kaon photoproduction can be a good 
probe to find missing resonance states. 

NKS2 experiment aims to explore the strangeness photoproduction on the deuteron 
by measuring neutral kaons and Λ hyperons with tagged photon beams of  E  = 0.8-1.1 
GeV.  

We focus on Λ, a elementary particle composed of uds, an up, down and strange 
quark. 

Introduction 

n(γ, K0)Λ process has unique features in the investigation of kaon production 
process by electromagnetic interaction as follows, 

     no charge in initial and final state 
              t-channel Born term does not contribute 

     isospin symmetry to p(γ, K+)Λ process 
              sign of coupling constant in u-channel is opposite  

    g(K0Σ0n) = -g(K+Σ0p) 
     the electromagnetic coupling constants of resonances in the s- and t-

channels 
             different from K+ process : e.g., g(N*nγ) and g(K K0γ)  
Due to these characteristics, the interference among the diagrams in the K0 
production process is quite different from that in the K+ process. For the 
elementary reaction of γn  K0Λ, photon energy dependence and angular 
distribution at Eg = 1.05 GeV are calculated using Kaon-MAID (KM) model and 
Saclay Lyon A model (SLA). These two isobar  models agree well in their 
predictions of  the γp  K+Λ process, however they are significantly different 
for the  γn  K0Λ process. 

Feynman Diagrams for isobar model 

Schematic view of NKS2 

Acceptance 
Invariant Mass Distribution 

The figure above  presents the 
correspondence particles the between 
momentum and inverse velocity. The 

red, blue and magenta line 
represents τhe pion, proton and 
deuteron designated regions.  

Particle Identification: 

PID 
Mass squared distribution  
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Target
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Right Left

Inner Hodoscope (IH) & Outer Hodoscope (OH) 
  Trigger counter 
  Time of Flight 

Electron Veto Counter 
  e+e- background suppression 

Liquid D2 
 Target 

Cylindrical Drift Chamber (CDC) 
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  Trajectory of Charged 
Particle 

  Momentum 

Schematic view of the experimental hall 
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•  RPR (Regge Plus Resonance)  
         

•  Kaon-MAID and Saclay Lyon A  

Bremsstrahlung: Radiator 
 

1.2 GeV electron ring  

Invariant mass distribution of pπ-. The pπ- invariant mass is shown with the 
missing mass region of  region of  0.60 > MMpπ->0.40 GeV/c2 .  

Photon Energy: Eγ [GeV] 

Angular Distribution 

Simulation Condition :  

Generated L isotropically in Lab frame,  

           0 < pΛ < 1.2 GeV,  0.75 < cosθΛ,
Lab < 1.0 

Use the same analyzer for the experimental data. 

0.9 < cosθOA < 0.9 

Angle [cosθΛLAB] 

RESULTS 

Angular distribution as a function of lab 
scattering angle. 

Photon energy dependent integrated cross 

Momentum dependent differential cross 
section 

 Recoil Polarization 

Momentum: PΛ
LAB [GeV/c] 

Dedicated to the memory of Professor Osamu Hashimoto�
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Observation of 7Be Solar Neutrinos with KamLAND 
The 5th GCOE International Symposium 

Takemoto Yasuhiro (Physics, D3, Tohoku University) PN.4, 2013/Mar/05 

KamLAND (Kamioka Liquid scintillator anti-neutrino detector) 

The Detector Cleanness 
•  cosmic rays:  
•  < 10-5 of that at land surface 

◁ 2700 m.w.e depth 
•  radio activities 
•  238U: 7.3 x 10-19 [g/g] 
•  232Th: 1.5 x 10-17 [g/g] 
•  40K: < 1.5[uBq/m3] 

◁ water extraction 
◁ nitrogen purging 
◁ distillation 

Statistics 
•  volume: 
•  1000 ton liquid scintillator 

Resolution 
•  energy: 
•  6.9%/√E(MeV) 

Trigger Efficiency 
•  100% @ E > 380keV 
•  E(7Beν) < 662keV 

7Be Solar Neutrino 

type [cm-2s-1] Emax [keV] SSM-GS98 SSM-AGSS09 
pp 1010 260 5.98 (±0.6%) 6.03 (± 0.6%) 
pep 108 1220 1.44 (±1.1%) 1.47 (± 1.2%) 
hep 103 18,500 8.04 (±30%) 8.31 (± 30%) 
7Be    109 660 5.00 (±  7%) 4.56 (±  7%) 
8B 106 15,200 5.58 (± 14%) 4.59 (± 14%) 

pp-chain neutrinos 

matter effect on  
neutrino oscillation 

Standard Solar Model (SSM) ν flux prediction 

(Serenelli, Astrophys.J. 2009) 

7Be superiority 
•  Low, but enough high energy for  
a clean liquid scintillator detector 

•  Low energy to test matter effect 
to neutrino oscillation in  
combination with 8B solar neutrinos 
→particle-physics  

•  High flux to test SSM, especially 
the new solar problem “solar  
abundance problem” 
→astro-physics 

LowE data (before↑ after↓ LS_Distill) 

Major Distillation Targets 
 
 
 
 
 
 
 
 
 

Target Reduction 
Goal 

210Pb 105~104 
222Rn       ~103 
40K 102~101 
85Kr 106~105 

Campaign 
1st phase 
   ‘07/05 
~ ’08/06 
   1,600m3 

 
2nd phase 
   ‘08/06 
~ ‘09/02 
   3,500m3 

11C 

7Beν 
(AGS05) 

Through S/N  < 1,  
Important “Valley” for  
7Beν fitting is seen 

0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 
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x 

y 
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4.5m 

FV edge 

Purification of KamLAND liquid scintillator Temporally & Spatially variation of background 

Fiducial Volume selection 

Energy [MeV] 
Convection of Liquid Scintillator due to thermal destabilization 

induces 210Bi (mostly) from balloon edge. 

Event rate fluctuation inside R < 4.5m, 7Beν energy range  

7Beν 

If we fit all data at once? 

210Bi overwhelms 
7Beν 
⇓ 

subtle spectrum 
difference  

btw. 85Kr & 7Beν 
 is missed 

⇓ 
obtained finite  

value is unreliable 
 

Better use of clean region 
previous  
approaches 

Clean region selection 
① Larger volume → stat. 
② Smaller surface 
      → event position uncert.  
③ Analytical selection 
   → Smaller bias 
※selection bias remains 
    → “clean” is defined by 
         own event rate 

‘09 

‘11 ① 
② 
③ 

① 
② 

① Larger volume 
② Smaller surface 
③ Analytical selection 
④ Less selection bias 

Use all data (clean & dirty)， 
but emphasize clean data 
•  rank time-volume slices 
•  merge them into multi-data 

ex.) ranked period  

ex.) merged data sets 

11C 

210Bi 

85Kr, 7Beν 

210Po 

ranking a slice with event rate in neighboring (X, T) slices 

cl
ea
n 
↔
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irt
y 

not use 
 own slice  

Simultaneous fitting with least χ2 

! 2[e][d]=
D[e][d]! ( Eu[s][e][d]+ Ec[s][e]" )"{ }

2

De[e][d]2

! 2 = ! 2[e][d]
b
"

h
" + ! penalty

2

D  ：data 
De  ：data error 
Eu  ：expecteduncorrelated 
Ec  ：expectedcorrelated 
e  ：energy_binid 
d  ：data_setid 
s  ：spectrumid 

Data Set 
 (ranked by event 
rate 
   0.5 ≦ E < 0.8 MeV) 

  0 -   5 uBq 
  5 - 10 uBq 
10 - 15 uBq 
15 - 20 uBq 
25 - 30 uBq 
30 -      uBq 

Uncorrelated params 210Bi 
85Kr 
40K, 238U-234U 

Correlated params 7Beν (free) 
11C    (constrained) 

Fixed params 226Ra~, 232Th~, 
Spallation products 

Energy Window 0.5 < E < 1.4 MeV 

Remaining Problems 

Simultaneous Fitting 

Detection method for solar ν 

neutrino-electron 
elastic scattering 

→ any events, unable to be 
    tagged by delayed coincidence 
    could be background 

(Borexino, NIM, 2012) 

No. 2, 2009 SOLAR MODELS REVISITED L125

Figure 1. Relative sound speed δc/c and density δρ/ρ differences, in the sense
(Sun − Model)/Model, between solar models and helioseismological results.
Details on the inversion procedure and data used, as well as the reference sound
speeds and densities are given in Basu et al. (2009).

details). In the same figure, results for density inversions are
shown in the bottom panel. Again, the AGSS09 composition
leads to an improvement in the agreement with helioseismology
compared to the AGS05 model, but still far from the results
obtained for the GS98 composition.

As already mentioned, meteoritic and photospheric abun-
dances in AGSS09 agree with each other very well, but a few
elements show differences that could have potential impact on
details in the solar structure. To quantify this assertion, we have
computed an additional SSM using only the photospheric abun-
dances given in AGSS09, for which (Z/X)" = 0.0181. The
main characteristics of this model, identified as AGSS09ph, are
given in the last entry of Table 2. Compared to the model with
the meteoritic abundances, AGSS09ph performs somewhat bet-
ter in terms of helioseismological quantities as inferred from
the results summarized in the table, with discrepancies with the
measured depth of the CZ and surface helium abundance of the
order of 9σ and 4σ , respectively. The sound speed and den-
sity profiles are shown as dotted lines in Figure 1. The changes
with respect to our standard AGSS09 (meteoritic scale) model
changes are mostly due to the larger Mg and Fe photospheric
abundances (0.07 and 0.05 dex, respectively) that enhance the
opacity in the radiative interior; the fractional increase in opac-
ity is larger than the fractional increase in the overall metallicity
(note the largest improvement in the sound speed, for instance,
occurs at R ≈ 0.5 R", the region where the contribution of Mg
to the opacity is largest). Our results show that adoption of the
photospheric scale gives slight improvements in the solar model
predictions. However, since the uncertainties in the meteoritic

(a)

(b)

Figure 2. Separation ratios. Comparison between values determined from
BiSON data and the solar models presented in this work.

abundances typically are smaller than the corresponding ones
for the photospheric determinations, the meteoritic scale is our
preferred choice for solar abundances (with the exception of
the volatile elements that are depleted in meteorites). This is
reinforced by the historical robustness of meteoritic abundance
determinations.

Low-degree helioseismology ($ ! 3) can be used to de-
rive seismic information on the solar core, particularly by us-
ing the so-called separation ratios as described by Roxburgh &
Vorontsov (2003). Chaplin et al. (2007) have used the separation
ratios constructed with very precise frequencies of low-$ modes
measured by the Birmingham Solar-Oscillations Network
to constrain properties of the solar core. They showed the dis-
crepancy in solar models constructed with AGS05 composition
extends all the way to the solar core and is not just related to
deficiencies in the modeling of the solar outer layers, in the
convective envelope. Here we compare the observed separation
ratios to those computed for our solar models; results are dis-
played in Figure 2. As with other helioseismology indicators,
the GS98 model performs much better than the AGS05 model.
The adoption of the AGSS09 composition in the SSM has very
small influence in the core structure of the model, as it prac-
tically overlaps the AGS05 model. Results for the AGSS09ph
model closely resemble those from AGSS09 and, for clarity,
are not shown in Figure 2. As discussed in Basu et al. (2007),
values of the separation ratios are closely related to the quantity
1/r (dc/dr) integrated over the solar structure. Differences in
this quantity between models with AGS05 and AGSS09 (both
meteoritic and photospheric) compositions are very small and
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(Sun − Model)/Model, between solar models and helioseismological results.
Details on the inversion procedure and data used, as well as the reference sound
speeds and densities are given in Basu et al. (2009).

details). In the same figure, results for density inversions are
shown in the bottom panel. Again, the AGSS09 composition
leads to an improvement in the agreement with helioseismology
compared to the AGS05 model, but still far from the results
obtained for the GS98 composition.

As already mentioned, meteoritic and photospheric abun-
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elements show differences that could have potential impact on
details in the solar structure. To quantify this assertion, we have
computed an additional SSM using only the photospheric abun-
dances given in AGSS09, for which (Z/X)" = 0.0181. The
main characteristics of this model, identified as AGSS09ph, are
given in the last entry of Table 2. Compared to the model with
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ter in terms of helioseismological quantities as inferred from
the results summarized in the table, with discrepancies with the
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order of 9σ and 4σ , respectively. The sound speed and den-
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(note the largest improvement in the sound speed, for instance,
occurs at R ≈ 0.5 R", the region where the contribution of Mg
to the opacity is largest). Our results show that adoption of the
photospheric scale gives slight improvements in the solar model
predictions. However, since the uncertainties in the meteoritic
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abundances typically are smaller than the corresponding ones
for the photospheric determinations, the meteoritic scale is our
preferred choice for solar abundances (with the exception of
the volatile elements that are depleted in meteorites). This is
reinforced by the historical robustness of meteoritic abundance
determinations.

Low-degree helioseismology ($ ! 3) can be used to de-
rive seismic information on the solar core, particularly by us-
ing the so-called separation ratios as described by Roxburgh &
Vorontsov (2003). Chaplin et al. (2007) have used the separation
ratios constructed with very precise frequencies of low-$ modes
measured by the Birmingham Solar-Oscillations Network
to constrain properties of the solar core. They showed the dis-
crepancy in solar models constructed with AGS05 composition
extends all the way to the solar core and is not just related to
deficiencies in the modeling of the solar outer layers, in the
convective envelope. Here we compare the observed separation
ratios to those computed for our solar models; results are dis-
played in Figure 2. As with other helioseismology indicators,
the GS98 model performs much better than the AGS05 model.
The adoption of the AGSS09 composition in the SSM has very
small influence in the core structure of the model, as it prac-
tically overlaps the AGS05 model. Results for the AGSS09ph
model closely resemble those from AGSS09 and, for clarity,
are not shown in Figure 2. As discussed in Basu et al. (2007),
values of the separation ratios are closely related to the quantity
1/r (dc/dr) integrated over the solar structure. Differences in
this quantity between models with AGS05 and AGSS09 (both
meteoritic and photospheric) compositions are very small and

solar abundance problem •  3D solar atm. 
•  non-LTE 

discrepancy on solar sound speed & density 
btw. helioseismology & SSM 

Use all data (clean & dirty)， 
but emphasize clean data 
•  simultaneous fitting 

7Beν determination superiority of cleaner 
data is preserved, but dirty data is not discarded 

Fit 

~10% uncertainty on 7Beν flux 
is achieved so far (cf. ~5% @ Borexino) 

C(W)_D fit Data_D / 
D’s fit 

C(W)_C fit Data_C / D’s fit 
C(W)_C fit Data_D / D’s fit 

Each has 
problem 

Daniel’s fit does not  
reproduce his paper. 

a few % difference btw. 
Carles’ data and Daniel’s 
data 

210Bi β decay：1st non-unique forbidden 
 Correction [Allowed → Allowed + Forbidden] decay 
 is based on experiments 
   Daniel (1965)  lens β spectrometer 

Carles (2005)  LS photon counting 

less understanding of 210Bi spectrum 

Daniel’s method should give finer answer, but not reliable. 
Carles’ method is better for LS detector, but larger LS 
detector has different response. 
　　⇒ We need to make own 210Bi spectrum 

210Bi spectrum generation and result 
Data for 210Bi spectrum 
  (dirtiest ‒ cleanest) data 
 Assumption: 
  no other BG (especially 85Kr)  
  increases as 210Bi increases 

Summary 

Fit 210Bi spectrum 
  No forbidden spectrum 
×　 Corr(E) = (1+!E + "E 2 + #E3 + $E 4 )

Effect of 210Bi spectrum 
 

Effect on 85Kr 
before Bi calib. 
after    Bi calib. 

Effect on 7Beν 
before Bi calib. 
after    Bi calib. 

Check parameter dependency with 
fitting each ranked data. 
7Beν should be identical by definition 
85Kr should be identical by assumption 

obvious dependency of 
•  data vs. 85Kr and 7Beν 
•  85Kr vs. 7Beν 

improper 
generation/ 
assumption  

Better 210Bi spectrum generation is 
required for reliable fitting. 
  ⇒ data extraction from the same volume, 
      different time, free from convection? 

•  With long endeavor of KamLAND collaborators,  
KamLAND equips ultra-low background LS,  
leading 7Be solar neutrino observation.  

•  During solar neutrino observation phase,  
multiple convection induced 210Bi into the center 
of the detector, which made temporal and 
spatial variation of background. 

•  For the better statistical treatment against  
such overwhelming background, following  
method was taken. 
Ø  slicing volume into small pieces 
Ø  ranking each slices and merging them 
Ø  fitting all data simultaneously 

•  ~10% uncertainty of 7Beν flux is achieved. 

•  With precise understanding of 210Bi spectrum,  
we will finalize 7Beνresult then test  
SSM and Borexino result. 

dedicated to Stuart Freedman, who was one of the great leaders of KamLAND,  
and who participated and gave a talk in the 1st GCOE symposium. 
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body

6Be nucleus 
• The most simple 2p-emitter 

(alpha + p + p). 
 
 
 

• The sequential decay through 
(5Li + p) is forbidden. 

General properties 
• The novel decay-mode of  proton-excessive nuclei. 
• Two protons are emitted sequentially or simultaneously. 
• Famous two-nucleon emitters ; 6Be, 16Ne, 45Fe, 54Zn, 16Be(2n), etc. 

Nuclide 6Be(Z=6) 16Ne(Z=10) 45Fe(Z=26) 54Zn(Z=30) 16Be(N=10) 

Decay mode 2p (100%) 2p (100%) 2p (70%) 2p (90%) 2n (?) 

Q2N [MeV] 1.37 1.40 1.14 1.51 1.35 

Decay width [MeV] 0.092 0.11 9.7 10-20 2.1 10-19 ? 

Lifetime [s]  10-19  10-19 6.8 10-3 3.2 10-3 ? 

Formalism 

He4Li5Be6

1.5
1.96E
3/2J

2p

[MeV]E

-0.1

-0.2

0.092
1.37E
0J

Final State Interactions (FSIs) 

Initial configuration 
• Decay-aspects are dominated not only by interactions but also by 

how two protons are before the emission. 
 

  e.g. with ``Confining Potential’’ at t=0, 

),()(
2

)(
2

),(

21p2p1
21

2p
p

2
2

1p
p

2
1

21p2p1
21

p2p13

rrv
mA
pprVprVp

rrv
mA
pphhH body

core-proton interaction 
= Woods-Saxon + Coulomb 

proton-proton interaction 
= Minnesota + Coulomb 

core ppr
ppcr

``di-proton 
  correlation’’ 

di-proton or di-neutron correlation (prediction) 
It is theoretically expected that there is a strong correlation of 
two nucleons inside nuclei. 

ppONe.. 1517ge

T.Oishi,  K.Hagino,  and  H.Sagawa,  PRC82,024315(2010) 

12,r

O15

r 2

r1

ẑ
12

Advantage of this method 
• TD-approach makes it possible to detect the role of the initial 

configuration and the di-proton correlation in 2p-decay. 

Decay probability and width 
• The calculated Q2p,Thr. is adjusted to Q2p,Exp.=1.37 (MeV). 

Time-development of density of probability 

Conclusions 
• Decay width ; . is in excellent agreement with experiments. 
• Di-proton correlation in 2p-decay is apparent, as the result of 

both p-p FSI and initial configuration. 
 

Future Work 
• It is needed to distinguish the effect of initial configuration, 

which is critical to discuss the intrinsic di-proton correlation 
inside stable nuclei. 

2

ppppc ),,(;total rrt

Tim
e 

2

ppppc ),,(;decay rrtd

di-proton 
correlation in 
the initial 
configuration. 

di-proton 
correlation by 
the p-p FSI. 

Thr.= 88 (keV)  Exp.= 92 (keV) 
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P-7
The d d reaction in the energy region of 0.7 E 1.1 GeVgy g

Chigusa Kimura for NKS2 Collaboration Department of Physics Tohoku UniversityChigusa Kimura for NKS2 Collaboration,  Department of Physics, Tohoku University

Introduction •Non quasi free process
Two nucleons excited?

Introduction •Non-quasi-free process
Two nucleons excited?

• Double pion photoproduction •Double delta production (ref.[1])• Double pion photoproduction
TAGX -A. Shinozaki Ph.D. thesis (γd --> ρ0 d)

G d St t Double delta production (ref.[1]) (γ ρ )
Benz et al. (γd --> π+ π− d all)

0Exited State
Ground State
Nucleon

photon

•Coherent production (Fig.2) Benz et al. (γd --> ρ0 d)

Nucleon

Exited State 
(Resonance)

Nucleon
nCoherent production (Fig.2)Nucleon

photon
( )
N*, p

n

without deuteron disintegration.
p p Deuteronn pg n

This process mechanism still has  not p
been understand well There was aFigure 1: Image of photoproduction been understand well. There was a 
f th ti l h d ffew theoretical approach and a few •On nucleon ?experiments (Fig.3) .On nucleon ?p ( g )

1. A nucleon absorbs a photon and excites.1. A nucleon absorbs a photon and  excites.
p

2. The nucleon resonance decays, it emits mesons. Fi 3 P di t d ti f h t

p p pVector meson 2. The nucleon resonance decays, it emits mesons. Figure3. Predicted cross section of coherent 
p

ndominance and final 
• To study emitted pions, we can understand production and experimental data. (ref.[2])Deuteron nnstate interaction?y p ,
1 Possible resonance

( [ ])

* i i h ff i hi hFi l i i ?
state interaction?

1,  Possible resonance
2 I t ti b t h t d l

*Cross section is the effective area which p Final state interaction?
2,  Interaction between photon and nucleon. governs the probability of some

p
np governs the probability of some 

absorption eventppp
absorption event.p

n n•On deuteron
Figure 2: Coherent photoproduction

n
n n

b fi i ( ) h
Figure 2: Coherent photoproduction

•Above first resonance region (E ~400MeV), the 
photon interacts mainly with each nucleon in the Th bj ti f thi t dphoton interacts mainly with each nucleon in the 
deuteron (quasi free process)

The objective of this study
deuteron (quasi-free process). 

I ti ti f th h i f h t d bl i h t d ti th l i t t l h t b ti
•However in the previous study it was suggested

• Investigation of the mechanism of  coherent double pion photoproduction the role in total photoabsorption.
•However, in the previous study, it was suggested  
th t th t ib ti f t l it ti • Obtaining the cross section and its energy dependence in 0 7 E 1 1 GeVthat the contribution of two nucleons excitation • Obtaining the cross section and its energy dependence in 0.7 E 1.1 GeV
(non-quasi-free process) is not small (ref[1]).( q p ) ( [ ])

E i tExperiment EVEVp EVEV

Ph t bPhoton beam OHH
Th i t i d t t R h C t f El t Ph t S i (ELPH) i h t b

OHH
• The experiment was carried out at Research Center for Electron Photon Science (ELPH), using a photon beam.

A h t b i t d b b t hl f l t b d t d b t i t• A photon beam is created by bremsstrahlung from an electron beam, and tagged by tagging counters. CDC

Th h t 0 7<E <0 9 G V (E idth 5 M V) 0 8<E <1 1 G V (E idth 6 M V)• The photon energy range : 0.7<E <0.9 GeV (Energy width~5 MeV), 0.8<E <1.1 GeV (Energy width~6 MeV) 

VDCNeutral Kaon  Spectrometer 2 (Fig. 4) VDCp ( g )

• The charged particles in the final state were detected using the Neutral Kaon Spectrometer 2 (NKS2) IHThe charged particles in the final state were detected using the Neutral Kaon Spectrometer 2 (NKS2)

• Dipole magnet (B ~ 0.42 T at the center) OHVp g ( ) OHV
Target

20 cm

• Drift chambers :Vertex Drift Chamber (VDC),  Cylindrical Drift Chamber (CDC)
Target

( ), y ( )

• TOF counters : Inner Hodoscope (IH), Outer Hodoscope (OH)p ( ), p ( )
1 mBeam• Electron Veto 1 mBeam

i i f h h d i l
BeamBeam

•Trigger:  Detection of more than two charged particles Figure4. Schematic view of NKS2

T Li id d i l d h f NKS2• Target: Liquid deuterium :located at the center of NKS2

AnalysisAnalysis
Reaction Processs

nt
s

E S l i
. Reaction Process

nt
s

p d

ou
n

50Event Selection Calculate the invariant mass (IM)ou
n

410
p

0.7<E <0.9GeV

C
o 50

S l ti t hi h i l d th th
Calculate the invariant mass (IM) 
f 2 i t h k th i t di t

C
o10

40Selecting events which include the three of 2 pions to check the intermediate 
3charged particle in the final state. state.310

30
g p

20
1. Particle identification (Fig.5) IM =  (E ++ E -)2 – (p ++ p -)2

210 20
( g ) ( + ) (p + p )210

10• Calculate Mass of particles • Fig. 7 show the invariant mass 
10p g

distribution of + and -. Upper is in10

0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 10• Drift Chamber: distribution of and . Upper is in 
the photon energy region 0 7 0 9

]2[G V/-+I i t M f
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Momentum the photon energy region 0.7-0.9
G V d l i i 0 8 1 1G V1 ]2 [GeV/c-π+πInvariant Mass of Momentum GeV and lower is in 0.8-1.1GeV.1

• Hodoscope: Time of flight Th ll i 3 b d h
-1 0 1 2 3 4 5 6

ts

Hodoscope: Time of flight 
Velocity of particles • The yellow area is 3 body phase ]2)2 [(GeV/c2Mass Rho meson 

ou
nt 60

Velocity of particles space distribution generated by 
])[(

Figure 5: Squared mass distribution production0.8<E <1.1 GeV

C
o

50m2 = (1/ 1)p2
p g y

Monte Carlo Simulation
Figure 5: Squared mass  distribution.

50

) 400
m  (1/ 1)p Monte Carlo Simulation.

40un
it)

350

400

2 Check the momentum conservation • The peaks around 0 6 - 0 8 GeV/c2 40

rb
. u

300

3502. Check  the  momentum conservation 
bet een photon energ and total

The peaks around 0.6 0.8 GeV/c
suggest the rho meson production in 30

d 
(a

r

250

300between photon energy and total suggest the rho meson production in 
20Y

ie
ld 250momentum of three particles . the intermediate state. 20Y 200

p

l h d d i (M ~0.77 GeV/c2)
101503. Select the d d reaction (M 0.77 GeV/c )

0
100

Th i ld f hi i i h i Fi 6 • Now detail simulations are       
2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
50The yields of this reaction is shown in Fig.6. Now deta s u at o s a e

ongoing to determine the ]2 [GeV/c-π+πInvariant Mass of 
0 6 0 7 0 8 0 9 1 1 1 1 20

Thi i ld li d b th t t l
ongoing to determine the 
i t di t t t[GeV]γE

0.6 0.7 0.8 0.9 1 1.1 1.2This yields were normalized by the total intermediate state . [ ]γ
photon numbers of  the each experiments Aft d t i ti f tiFigure 6: Corrected yield of d d. Figure 7: Invariant mass of + and -. The yellow p p
and the tagging efficiencies • After determination of reaction Figure 6: Corrected yield  of d d. g y

distribution is simulation of 3body phase spaceand the tagging efficiencies . processes, the cross section can be Open circle : 0.7<E <0.9 GeV , closed circle : 
distribution is simulation of 3body phase space.

p ,
obtained

p ,
0 8<E <1 1 GeV obtained.0.8<E <1.1 GeV .

SSummaryy
• The coherent photoproduction on the deuteron is useful for understanding the mechanism of photoabsorption on a bound nucleon in the GeV region.p p g p p g

• The experiments were carried out in the energy range  of 0.7-1.1 GeV at ELPH with NKS2.p gy g

h hi h i l d d d d i d d h k d h d d• The event which include deuteron are detected in our data,  and checked these event are d d  event.

Th d i ld f hi i b i d f i f h I fl i hi i•The corrected yield of  this event  is obtained as a function of  photon energy. It seems flat in this energy region.

I i t di t ib ti f + d h k d h Thi lt h th h i d d i th i t di t t t f thi ti•Invariant mass distribution of + and - shows a peak around rho meson mass. This result shows the rho meson is produced in the intermediate state of this reaction.

Reference

.[1] K. Hirose et al.: Phys. Lett. B674 (2009) [ ] y ( )

[2]  A. Fix and H. Arenhoevel : Eur. Phys.J. A25 115-135(2005)[ ] y ( )



1.Motivation & Theory 

“Study of B →DK , D→KSK  for the measurement of CP -violating angle 3, 
and D* →D , D →KSK  for the modeling of D→KSK  Dalitz plane 

CKM (Cabibbo-Kobayashi-Maskawa) Matrix 

Complex terms 

Poster No. 8             Zenmei Suzuki  (Physics, Tohoku University)           5th Mar. 2013   @ 5th GCOE international symposium 

Unitarity 

2.Facility 

Unitarity triangle Unitarity triangle is described on complex 
plane,  and represents CP-violation. 
To understand CP-violation, the angles of 
this triangle should be measured precisely. 

The measurement accuracy of 3 is not so 
good, and should be improved. 

3.Analysis 

electron 8.0 GeV G VGGGeVGGGeV
positron 3.5 GeV 

3km round 

KEKB-factory & Belle Detector 

KEK@Tukuba 

• KEKB-factory is a facility to make B particles. 
• High energy electrons and positrons collide, 

and annihilate in pairs. 
• From the pair annihilation, heavy B mesons 

are generated. 

• Belle detector is to search the decays 
of B particles. 

• Belle detector consists of many sub-
detectors, and determines the particle 
type, momentum, charge, and so on. 

• The mother particles are reconstructed 
from detected particles. 

• The world largest data of 1014 fb-1 
had been recorded. 

Present limits for each angle 

• Neutral D particles decay to various particles. In this study, 
D [KS K  decay is searched. 

• There are 2 modes in D KS K  decays : D0  KS K + , 
D0  KS K+  and their charge conjugate mode, beause both 
D0 and D0 can decay into KS K + and KS K+ .  

• D decays into KS K   via many intermediate processes (e.g. 
D [KS +]K*+ K , D [K +]K*0 KS ,  … etc.). 

• These processes should be separated because strong phases 
differ. The Dalitz plot analysis is needed. 

•  D0  KS K + cannot be distinguished from D0  KS K + 
in B DK , however, the information of each Dalitz plot 
is needed to fit B DK , D KS K   Dalitz plot. 

• Therefore, D* D , D  KS K  decay which has 
large statistics and can be distinguished between D0 and D0 
using the charge of D*  is studied to model the Dalitz 
distribution of D  KS K  decay. 

3 can be measured by examining the asymmetry between B DK  and B+ DK+ decays.  
Among the various B  decays,  B  meson which decays to neutral D meson (D0 or D0) and 
K  meson is used for 3 measurement. 

1   

2   

3   

3 

2 

1 

3 ~ arg(Vub) 

D0 and D0 can decay to the same final states.  
Therefore B D0K  and B D0K  decay 
amplitudes interfere each other. 
The interfering between D0 and D0 is used to 
measure 3.  : strong phase 

 - 3 
 + 3 

A(B+ D0K+) 

A(B DK ) 

A(B+ DK+) 

A(B D0K ) = A(B+ D0K+) 

A(B D0K ) 

D* D , D  KS K   : Dalitz analysis 
When D decays into 2 particles, and one 
of them decays furthermore into 2 
particles, the reconstructed mass of the 
correct pair combination yields a mass of 
a certain particle.

Therefore to verify intermediate states, the 
plot of combination A versus combination 
B is used. This is the so called Dalitz plot 
which is used to extract the value of 3. 

? 

comb.A  comb.B 

D : D0 or D0 

4.Summary and Plan 
• The precise measurement for 3 is important in terms of 

verification for CP-violation. 
• B DK decay is used for the measurement of 3. 
• Among the various D decays, we use D KSK  with Dalitz plot. 
• To make the model of D KSK  decay, D* D , 

D KSK  is analyzing. The fitting strategy has been confirming. 
• Of course, the final purpose is the measurement of 3 using 

B DK , D KSK . 

e

e+ 

b 

b 
u 

u 

(4S) 

B+ 

B

Dalitz plot is fitted as a superposition of some resonances.  
The fitting strategy has been confirming using Monte Carlo simulation. 

1.5 

1 

0.5 
0.5           1          1.5 

m
2 (

K
,

) [
G

eV
2 /c

4 ]
 

m2(KS, ) [GeV2/c4] 

D0 KsK+ D0 KsK + 
Dalitz Plot 

45,862 
    events 

Black dots : data , Red line : fitted function 

Projection 

2D fit 

• To fit the Dalitz plot, the effects of the 
background, efficiency, and resolution 
have been studying. 

• Especially, it was understood that the 
resolution affect the fitting result 
contrary to expectation. 

• The Dalitz plot of B DK, D KSK  
is fitted as a superposition  of D0  KS 
K+ (left figure) and D0  KS K +. 

The fitting method is 
been established, and 
the fitting using the 
real data is being 
prepared. 

MC 

MC 
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3. Results 

4. Conclusion 
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3-2. Temperature dependence of x-ray induced phase transition 
       in La0.5Sr1.5Mn0.97Fe0.03O4 

3-4. Dopant dependence of x-ray PIPT in La0.5Sr1.5Mn1-xMxO4   
       (M = Cr, Fe, Ga) 

Dopant dependence of x-ray induced phase transition 
In impurity doped layered manganites  

 

Y. Yamaki 
 

Department of physics, Tohoku University 

3-1. X-ray exposure effect in La0.5Sr1.5Mn0.97Fe0.03O4  
(b) Ga concentration dependence of x-ray PIPT (a) Dopant dependence of x-ray PIPT 

1.Introduction 2.Experiments 

 Resonant and non-resonant x-ray scattering experiment. 
 La0.5Sr1.5Mn1-xFexO4 single crystal.  
 BL-4C and BL-3A, Photon Factory, KEK. 
 Incident x-ray Energy : Mn K-edge(~6.55keV) and 6.5keV. 
 Polarization analysis : Cu(220). 
 Configuration at Ei//c is defined as Ψ=0 

A single layered manganite La0.5Sr1.5MnO4 shows charge-orbital ordering(COO) 
below T = 240K. We have investigated the impurity effect on COO state in this 
material and substituted Fe ions for Mn ions. In Fe-doped compound, not only that 
transition temperature and order parameter of COO decrease but also COO state is 
strongly suppressed by x-ray irradiation at low temperature. In this paper we report 
this photo induced phase transition in impurity doped manganite La0.5Sr1.5Mn1-

xFexO4.  

Experimental configuration 

La0.5Sr1.5MnO4 

In this study we have investigated photo induced phase transition in impurity doped manganites.  
 
1. Phase-separated state between the charge-orbital ordered and ferromagnetic phases is 

realized by impurity doping. 
 

2. In this phase-separated region, x-ray induced persistent and bidirectional phase 
transition between charge-orbital ordered and ferromagnetic phases was observed. 
 

3. In the present case, impurity doping plays a crucial role in forming the phase-separated 
state and also in determining the rate of x-ray induced phase transition. 

(1)Pr0.7Ca0.3MnO3 (2)W:VO2 

1-1. Photo induced phase transition 1-2. Bicritical phase competition & object material 

Phase diagram Temperature dependence of 
order parameter for COO 

(1) Insulating antiferromagnetic 
state(charge ordering)  

 → metallic ferromagnetic state 
(2)Insulator → metal 

Schematic view of impurity substitution 

Spin configurations of impurity ions 

: Mn3+ 

 
: Mn4+ 

 
: Impurity ion 
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→ This phenomenon is induced by x-ray exposure.
     X-ray induces phase transition between antiferromagnetic charge-orbital ordered (AFM/COO) and  
     ferromagnetic charge-orbital disordered (FM/DO) states. 

No.12 

(b) X-ray exposure time dependence 
      of the correlation length of COO 

(a) X-ray exposure time dependence  
      of the intensity for Q = (1/4 7/4 0)      of the correlation length of COO

(c) Incident x-ray photon flux dependence  
      of the intensity for Q = (1/4 7/4 0) 

(d) X-ray exposure time dependence  
      of AC-magnetic susceptibility g p y
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excitations during the scattering process
(channel coupling effect)

e.g. large enhancement of fusion cross 
sections at sub-barrier energies 

nucleus is composed of protons and neutrons

important in reactions near the Coulomb barrier
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Introduction

Role of noncollective excitations in low-energy 
heavy-ion reactions

Shusaku Yusa, Kouichi Hagino(Tohoku Univ.), Neil Rowley(IPN Orsay)

Results quasi-elastic scattering for 20Ne + 90,92Zr systems

Summary

heavy-ion reaction

Dqel = − d

dE

(
σqel(E, π)
σR(E, π)

)

Dqel = − d

dE

(
σqel(E, π)
σR(E, π)

)
Quasi-elastic scattering(elastic+inelastic+transfer) 
experiment for 20Ne + 90,92Zr

Experimental quasi-elastic barrier distributions 
show different behavior

much more smeared distribution for 20Ne + 92Zr 
system

On the other hand,

C.C. calculation (which includes rotation in 20Ne 
and vibration in 90,92Zr) yields similar barrier 
distributions between two systems

dominance of the contribution from highly 
deformed 20Ne

E.Piasecki et al., 
PRC 80, 054613(2009)

Conventional C.C. calculation (which takes into 
account only the collective excitations) cannot 
account for the experimental data !

Energy spectrum for Zr isotopes
different level density

90Zr : Z=40, N = 50 (shell closure)

92Zr : Z=40, N = 50 + 2

Many noncollective (single-particle) 
excited states appear in 92Zr spectrum

※ known states
90Zr : 12, 92Zr : 53 up to 4 MeV
90Zr : 35, 92Zr : 87 up to 5 MeV

These noncollective excited states are not 
taken into account in the conventional c.c. 
calculations

Important role of the noncollective excitations for 20Ne + 92Zr reaction ?

Description of noncollective excitations

Coupled-channels equations
(in the iso-centrifugal approximation)

[
d2

dr2
+ k2 − J(J + 1)

r2
− 2μ

�2
(VC(r) + VN(r) + εn)

]
uJ

n(r) =
∑

m

2μ

�2
Vnm(r)uJ

m(r)

k =

√
2μE

�2
εn : excitation energy of the n-th channel

Vnm : coupling matrix element → excitations during the scattering process

random matrix theory (RMT) for couplings to noncollective states

V II′
nn′ (r) = 0

V II′
nn′ (r)V I′′I′′′

n′′n′′′ (r′) = {δnn′′δn′n′′′δII′′δI′I′′′ + δnn′′′δn′n′′δII′′′δI′I′′}

×
√

(2I + 1)(2I ′ + 1)
∑

λ

(
I λ I ′

0 0 0

)2

× wλ√
ρ(n)ρ(n′)

e−
(εn−ε′n)2

2Δ2 e−
(r−r′)2

2σ2 h(r)h(r′)

r 

V
(r

)

D.Agassi, C.M.Ko, H.A.Weidenmüller, Ann. Phys. 107, 140(1977)

ρ(n): level density

Coupled-channels calculation for 20Ne + 90,92Zr
● collective excitations for 20Ne and 90,92Zr

20Ne : 0+, 2+, 4+, 6+(rotational states), 3- (octupole phonon state)

Nucleus ε (MeV) λπ βλ
90Zr 2.18 2+ 0.089

2.75 3- 0.211
92Zr 0.93 2+ 0.144

2.34 3- 0.17

● noncollective excitations for 90,92Zr

✓ use experimental data for the excitation energy (εn) and spin (λn)

✓ only coupling from the g.s. to the noncollective states are taken into account

90Zr : 45 levels up to 6.7 MeV are included
92Zr : 75 levels up to 5.7 MeV are included

(RMT determines the coupling strength)

Same parameters in the random matrix model are employed for both 
20Ne + 90,92Zr systems

20Ne + 90Zr 20Ne + 92Zr

✓ For 20Ne + 90Zr system, the effect of the noncollective excitations is small

✓ For 20Ne + 92Zr system, the barrier distribution is drastically smeared

Difference in the barrier distributions due to the noncollective excitations

Results Application to 24Mg + 90,92Zr reactions (theoretical prediction)

24Mg : prolate deformation ε(2+) = 1.37MeV, β2 = 0.505
24Mg + 90Zr 24Mg + 92Zr

Noncollective effect
similar to 20Ne + 90,92Zr 
reactions

Smaller noncollective 
effect for 24Mg + 90Zr 
system

✓

✓ Much smeared barrier 
distribution for 
24Mg + 92Zr system

Role of noncollective excitations in low-energy heavy-ion reaction

✓ The random matrix model for the description of noncollective excitations

✓ Different magnitude of the noncollective effect between 20Ne + 90,92Zr  systems

✓ Similar difference in the barrier distribution can be expected for 24Mg + 90,92Zr 
reactions

Origin of the difference ?

included channels (model space)

different behavior of the barrier distributions

1 2

3 4

5 6

7 8

A quantity which is sensitive to 
the excitation effect

Coupling to collective excitations are taken into account by coupled-channels (c.c.) method
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   into account in the analysis
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Conventional coupled-channels analysis for heavy-ion reactions takes into 
account only collective excitations

✓

a few states are relevant, coupling is strong

Role of noncollective excitations was not clarified in the previous analyses

coupling is weak, but there are many states
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Future perspectives
✓ The effect of multi-nucleon transfer reactions

✓ Application to heavy-ion deep inelastic collision Quantum mechanical 
study of friction 

20Ne + 90Zr

20Ne + 92Zr
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Dep. Phys., Tohoku University, Sendai 980-8578, Japan
H. Iida, T. Sugawara, H. Aoki, and  N. Kimura

  CeRhSi
3
 is pressure-induced heavy-fermion 

superconductors [1, 2]. As shown in the T-P phase 

diagram, the superconducting phase appears below 

TN. In zero magnetic fields, magnetic quantum critical 

point (QCP) is unclear because the superconductivity 

masks the antiferromagnetic (AFM) transition above 

P1. However, the magnetic-filed-induced AFM phase 

appears above P1. Therefore, following question arise;

 ※ (T ) curves of 1.97-2.61GPa for the magnetic fields every 0.5T from 0T to 7T 
    and every 1T from 7T to 16T each Pressure.  (T ) curves of  2.71GPa for the
    magnetic fields every 2T from 6T to 16T.

Search for a feld-induced quantum critical point 
in CeRhSi3
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Search for a feld-induced quantum critical point 
in CeRhSi3

Introduction

 In the paramagnetic state, (T ) follows a T-linear dependence  for each pressure.　
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P1: AFM order vanishes near 2.4GPa
P2: TC  maximum at 2.6GPa
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T-P phase diagram of CeRhSi3

  In order to elucidate this problem, we have performed the electrical resistivity measurements under 
  magnetic fields and pressures near P1.

Resisitivity & T-H pase diagrams

HM

HM

T
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T
N

T
C

onset
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T
C

onset

T
N

T
C

onset

Is there a magnetic field induced QCP in CeRhSi3? 

2.61GPa, resistivity at visinity of the HM

● The resistivity plotted against above HM

Plotted Tn Plotted T2 Plotted T1 at low temp.
and T2 fitting

(T ) changes in behavior from T1 to Tn at low 

temperatures below about 0.8K, with increasing 
the field, n in (T )= 0 + AnT n is slightly increases. 

Field induced AFM phase is suppressed by applying pressures.

In contrast a-axis, effect of magnetic field on AFM and SC state seems to be 
     very hard in its c-axis.

The exponent increases with increasing field, suggesting 
a gradual recovery to FL state. However, surprisingly, 
recovery of the FL state is unlikely to start from HM.
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 (T ) =  0 + A2T 2
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● Seach for a induced QCP

In low temperature, (T ) obeys T-square,
upper limit of T2 behaviors slight change. 

 

No enhancement of A2 and A1
PM at HM ,

and no anomaly 0
PM at HM.
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T-linear fitting from 
paramagnetic state (1.4~1.2K) 

References and 
more information of this study 

 We analyzed (T ) under magnetic fields below and above P1, and we determined the quantum-phase-transition
field HM where the AFM transition temperature drops to zero. Recovery of Fermi liquid state is not clearly 
observed above HM, and enhancement of A less obvious in the vicinity of HM.These results are is in sharp 
contrast with those of other heavy-fermion compounds. We could not conclude that HM is the QCP.

[1] T. Sugawara, et al., J. Phys. Soc. Jpn. 81 (2012) 054711.

[2] N. Kimura et al., J. Phys. Soc. Jpn. 76 (2007) 051010.

[3] H. Iida, et al., to be published in physical status solidi

     “Search for a Quantum Critical point in CeRhSi3 via Electrical Resistivity”

FL state stay constant even at high field.

Magnetic-field dependences of and A-coefficient
for different Pressures
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Not obtain a clear evidence that HM is the QCP!!

Experimental

・Czochralski pulling  method in a tetra-arc furnace

・Low ac four-terminal method 
・Residual resistivity ratio (RRR) ＞ 100

・Ni-Cr-Al/BeCu Clamped piston cylinder cells

  equal mixture of n- and i-propanol
   ● Sample preparation

● Hydrostatic pressure system

・ Anneal: 900℃, 2×10-6, 1week

● Resistivity

single crystal

electrode

CeRhSi3

necking

4

80
m

m

Pressure ~3GPa

sample

● 3He/4He dilution refrigerator 
          with 17T-superconducting magnet

Conclusion

upper nut
piston backup
piston 

bottom nut 

sample space

teflon cell
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One-neutron removal 
cross sections σ-1n for 31Ne 

exp. for 31Ne 

The non-adiabatic effect of Erot ≠0  

band head  ground state  

Ground State 

 31Ne : (deformed core 30Ne) + n 
 Axial quadrupole deformation of the core  
 The core nucleus has a rotational band. 

Particle-Rotor Model 

aYRRr
VrV

cn
cn ))ˆ((exp1

)ˆ,(
20200

0
r

r

Deformed Woods-Saxon potential : 

r 

n 

core 30Ne : rotation 

cnr̂

z’ 
W S potential 

n 
31Ne 

Ic 

j,l 

(IM) 

jlI
jlIIM

c

c 0  
f7/2 

2  

p3/2 

4  

p3/2 

For example, 

J
)(II cc

2
1 2

Rotational band 

0.801(MeV) 

30Ne 

4  

2  

0  

 

adiabatic limit 

 Nilsson diagram (εK)   K is a good quantum number 0)E(H rotrot
adiabatic limit 

rotcn HYrVHH )ˆ()( 2020 r
  deformed rotational  spherical  

→

mixture of angular momenta  

 

Yasuko Urata      Department of Physics, Tohoku University 

 Halo Nuclei 
 Large interaction cross section σI 

2
arg )(~ ettprojectileI RR   Large radius for 11Be  

I. Tanihata et al., 
PRL55(1985)2676; PLB206(1988)592 

Radii for Be isotope 

Spatially extended density distributions of the weakly bound valence neutron(s) 

 s-wave halo nuclei : 11Be, 19C, …  
 p-wave halo nuclei : 11Li, 6He  

 Root-mean-square radii of s- or p- wave  
  states diverge in the weakly bound region. 

 Halo structure 
re~)r(

core 
nucleus 

valence 
neutron 

 reproduce the experimental cross section. 

M. Fukuda et al., PLB268, 339 (1991) 

Density distribution of 11Be 

11Be  

target nucleus all nuclei except 11Be 

e.g. 11Be 

31Ne Nucleus 

Interaction cross sections 
 Halo Structure of 31Ne  

 Large interaction cross section 
                                               (M.Takechi et al., Phys. Lett. B 707, 357 (2012) 

 Large Coulomb breakup cross section 
                                                     (T.Nakamura, et al.,PRL103,262501(2009)) 

Mean Field Picture 

 single particle states in a deformed potential V(r,θ) 

 Deformation of 31Ne nucleus 

20 

1s 

1p 
1d,2s 

1f7/2 

2p3/2 

p-wave 

     Nilsson diagram  
     I.Hamamoto, Phy.Rev.C 81, 021304(R) (2010))  β  0.2-0.3 : [330 1/2], 0.4-0.6 : [321 3/2]  p-wave halo 

Nucleons are independent particles which move in some 
average potentials created by all the nucleons in the nucleus. 

 Naive spherical shell model  
       1f7/2 configuration for the valence neutron of 31Ne 

Results  

Reaction cross sections 

(P. Batham, I.J. Thompson, and J.A. Tostevin, Phys. Rev. C 71, 064608 (2005)) 

Calculations of reaction cross sections with the Glauber theory which describes high-
energy nucleus-nucleus collisions 

b 

c.o.m. 

C

31Ne 

 Eikonal approximation : scattering in the forward angle 
 Adiabatic approximation : neglect the intrinsic excitation energy for the large incident energy  

IM : initial state wave function (ground state) with particle-rotor model 

)SS
1I2

11(d
M

2
IMncIMR b

 The small non-adiabatic effects for the reaction cross sections of 31Ne 

 The reaction cross section of Iπ = 3/2− configuration at β2 = 0.2 
 reproduces the experimental interaction cross section. 
 leads to a consistent description for the one-neutron removal cross section. 

      A very promising candidate for the ground  
      state of 31Ne 
       consistent with the analysis of the Coulomb 
       dissociation cross section of 31Ne with the PRM 

Summary 
 Ground state properties of the deformed halo nucleus 31Ne 

          particle-rotor model (PRM) 
           the finite rotational excitation energy of the core nucleus  

 Reaction cross sections for 30,31Ne on the 12C target  Glauber theory 
Results 

experiment 

[330 1/2] 

[321 3/2] 

Coulomb breakup cross section 

(Y. Urata, K. Hagino, and H. Sagawa Phys. Rev. C 83,  041303(R) (2011)) 

Calculation : Sn= 0.2 MeV 
Experimental Sn :  
Sn= 0.29 1.64 MeV 

 In PRM calculations, 
the relevant quantity 
to the halo structure 
is the 0  component. 

Root mean square radii 
for 31Ne 

do not construct a halo 

halo 
structures 

 The reaction cross sections σR for 30,31Ne as a function of the one- 
    neutron separation energy Sn 

 Comparison to the experimental interaction cross section σI 

Reaction cross sections σR for 31Ne 

exp. for 30Ne 

exp. for 31Ne 
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 Probability of each component in the ground state wave function 

(0 p3/2 : 1.7 %) 

 The halo contribution to the reaction cross section  
     for 31Ne is small. 

 The adiabatic approximation works reasonably well.  

 Iπ = 3/2− configuration at β2 = 0.2 well  
    accounts for both σR and σ-1n for 31Ne. 

)Ne()Ne(~)Ne( 30
R

31
R

31
n1

The increase of the reaction cross sections from 31Ne to 30Ne 

One-neutron removal cross sections σ-1n for 31Ne 

Comparison with the experimental data
Motivations 

In the Nilsson model, the rotational excitation energy of the core nucleus is neglected.  
In reality, however, 30Ne has the first 2+ excited state at 0.801 MeV.  

Inclusion of the finite excitation energy of the core nucleus with a particle-rotor model 
Calculations of Coulomb breakup cross sections and   reaction cross sections 

 The effect of the finite excitation energy 

 Ground state properties of 31Ne  

(Y. Urata, K. Hagino, and H. Sagawa Phys. Rev. C 83,  041303(R) (2011)) 

this work 

 

 

Reaction Cross Sections of the Deformed Halo Nucleus 31Ne 
                                                            Y. Urata, K. Hagino, and H. Sagawa, Phys. Rev. C86, 044613 (2012) 

Density distributions for 30,31Ne 
(in the adiabatic limit) 
β2 = 0.2, Sn=0.2 MeV 

(W. Horiuchi et al., Phys. Rev. C81, 024606 (2010)) Experimental σ-1n(31Ne) : T. Nakamura et al., PRL103, 262501 (2009) 
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Uα Uβ

Uα ∩ Uβ

[xμ, xν ] =

∮
Q μν

ρ dxρ

[xμ, [xν , xρ]] + c.p. = Rμνρ

• 
• 

ds2 = dx2 +
1

1 +N2x2
(dy2 + dz2)

S1
T
2

• 

x ∼ x+ 1

g,B

B =
Nx

1 +N2x2
dy ∧ dz

TM = span{∂x, ∂y, ∂z}
L

E = g +B

t
∈ Γ(T ∗M ⊗ T ∗M)

∈ Γ(L∗ ⊗ L∗)

LTM

TM ⊕ T ∗M L⊕ L∗

L

(TM, [, ]Lie) (L, [, ]Lie)

R = R+
1

12
H2 R̃ = R̃+

1

12
Q2

• 

• 
LTM

L = span{∂x, dy, dz}
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Continuous Time Quantum Monte Carlo study of  
strong coupling superconductivity in Holstein-Hubbard model 

Satoshi Yamazaki, Shintaro Hoshino, and Yoshio Kuramoto 
Department of Physics, Tohoku University, Sendai, Japan 

Holstein-Hubbard model 
Order parameter & Double occupancy (half filling) 
Properties of superconductivity 

Polaron-Bipolaron transition 
Charge density wave ( CDW),  Antiferromagnetism 

Weak coupling approach 
 

BCS theory, Migdal-Eliashberg theory 

Properties of SC in strong coupling region 

Method 

Purpose 

Dynamical mean field theory  DMFT+CT-QMC  

W. Koller, et al. EPL, 66, 559 (2004) 

J. Bauer,  A. C. Hewson, PRB 81, 235113 (2010) 

J. Bauer,  et al, PRB 84, 184531 (2011) 

Breakdown 

Effect of                ? 

• Increase monotonically decreasing T   
 

• Saturate in low T 

Weak Increase Decrease 

strong    Decrease   Increase 

is larger 

Temperature dependence of order parameter 

Effective interaction 

E. Gull, et al., Rev. Mod. Phys. 83, 349 (2011). 

Phase diagram in Holstein model 

Conclusion  
cf. Attractive Hubbard model    

 Electron-phonon interaction       Exact solution in infinite dimension 

 Lattice vibration Half band width 

 Semi circular type density of states 

 Paramagnetic phase + Superconducting phase No long range order except SC  

 Finite temperature 

 Retardation effect  Suppress superconductivity 
 Double occupancy decrease  below 
 

 

Characteristic properties in strong coupling superconductor  has a maximum 

 Strong coupling region 

P. Werner and A. J. Millis, PRL 99, 146404 (2007). 

Condition parameter 

A. Koga and P. Werner, PRA 84, 023638 (2011). 

Weak       1 electron Strong    0 or 2 electron   SC            4 states mixed 

Electron-phonon strongly coupled systems (ex.MgB2, A3C60 , AOs2O6 , etc) 

 Superconductivity(SC) 

Decrease Increase 

Strong coupling region   Break the local pairs  

Strong coupling limit 

Saturate  slowly in strong coupling region 

J. K. Freericks,  et al, PRB 48, 6302 (1993) 

Coulomb interaction effect in strong region 

Filling dependence of Tc 

CDW (staggered order) 

Superconductivity 

Induce SC by depairing 

Strong coupling region 

Tc decrease exponentially 

Temperature dependence of  

Double occupancy with decreasing T 

Coulomb interaction 

Double occupancy decrease 

• Decrease monotonically 
• Robust at any filling 

• Rapidly decrease  
• Reentrant behavior 
      away from half filling 

TCDW  TSC  at half filling 

SC SC

BCS weak coupling limit  

 
Transition temperature with decreasing carrier density 

( = 1)  /  = 0.82 
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Double delta excitation 
- Invariant mass : From energy-momentum 
conservation before and after decay, the mass of 
particles  before decay are calculated. For example, 
since the delta particles are decayed for  and N,  
 
- A lower figures are the invariant mass distribution N. 
Left side: 2 dimension of invariant mass +p and -n. 
Right side top : Invariant mass of +p. 
Right side bottom : Invariant mass of -n. 
- From left side figure -> double delta excitation.  

Identification for +, - and proton 
- Using of the velocity  and momentum 
p of the charged  particle, the particle 
mass is calculated. 

- Missing particle : Non detected particle. 
From energy-momentum conservation, 
the mass of missing particle is calculated 
and the neutron is identified. 

P-21   Study of double delta photoproduction on the deuteron target 
Fumiya Yamamoto for the NKS2 collaboration, Department of Physics, Tohoku Univ.  

Neutral Kaon Spectrometer 2 (NKS2) 
Measurement of the velocity and 
momentum of the charged particle 
Component : 
* Dipole magnet : Momentum analysis 
* Hodoscope : Time of flight 
* Drift chamber : Detection of track 
Right figure : NKS2 seen from the photon 
beam down stream 

Hirose (NKS) 
      Asai (TAGX) 
      Wada (SAPHIR, PANIC’96, 

preliminary) 
      Shinozaki (TAGX, private 

communication)  
          J. A. Gómez Tejedor  

      A.Fix (very preliminary) 

Introduction 
When photon beam impinged on the nucleus, 
* nucleus is excited at the photon energy 1 MeV - 150 MeV. 
* single nucleon (general term of proton and neutron) is excited 
at the photon energy 150 MeV -. 

Experiment 

Right figure : the reaction probability of  
double delta photoproduction. 
The experimental data is poor. 
 
Physics :  
- Interaction between nucleon resonances
- Mechanism of double delta process 
Aim of study: 
-Determination of the reaction probability  
of double delta process 

Summary 

Nuclear photon absorption 

Photon energy 
 1 MeV - 150 MeV 

Photon energy 
150 MeV - 

Nuclear resonance 

Nucleon resonance 

The nucleon resonances are the excited states of nucleon.  
These emit mesons (  or  etc.) and decay. Delta particle is one of the 
nucleon resonances and decay for N. The life time is very short 10-23 s. 
The mass is 1232 MeV. 

Nucleon resonance 

The photon berm at Research Center for Electron 
Photon Science (ELPH) 

The difference of photon absorption 
reaction with two energy region. 

STB-ring  
1.2 GeV 
electron beam 

- The photon beam is 
generated via 
bremsstrahlung. 

- The photon energy is 
tagged by the detected 
scattering electron. 

p p

n 

p

n 
Decay 

Deuteron : The simplest compound nucleus 
consisting of proton and neutron 

Excitation 

Selection of d  + -pn reaction 

)1( 222 pm

Analysis 

)(

)(

222

pX

pdX

XXX

PPPPP
EEEMEE

PEM

E : Particle energy M : Particle mass 
P : Particle momentum 

Missing mass distribution 

*A lower index expresses the kind of particles. 

Result 

222 )()( NN PPEEM

  
-Double delta photoproduction is the process which excited double 
delta  
in the intermediate state. 

- The experiment is carried out at ELPH. 

 
- +, - and proton were detected using NKS2.  
-Neutron was identified using the missing mass. 
-Double delta excitation in the intermediate state was shown using the 
invariant mass distribution +p and -n.   

Mass square [(GeV/c2)2] 

       Mass square distribution 

Double delta excitation in the intermediate state of + - 
photoproduction process. Since the wave length for photons is 
smaller than the average  internucleon spacing for deuteron,  
it is wonderful that two nucleons excite. 

Proton target Deuteron target 
The probability of 
photon absorption 
on the proton and 
deuteron. Single 
nucleon is excited, 
and nucleon 
resonances is 
generated. 

 resonance
Other 
resonances

Double delta photoproduction process on the deuteron 

 resonance

Other 
resonances



Palsed Neutron Scattering Study of 
Magnetic Excitation in Dilute-Doped 

Bi2201-Sysyem 

Dept of Physics, Tohoku Univ, IMR,Tohoku Univ A , 
Kyusyu Institute of Technology B , KEKC .  

K. Tsutsumi, M. Fujita A , M. Enoki B , M. Matuura A , K. Sato, K. Yamada C .  

Spin correlation on CuO2 plane 

:Cu2+ :O2- 

J 

Super exchange constant J is determined 
by electron hopping parameter t & 
Coulomb interaction U 

B. Vignolle et al, 2007 

YBa2Cu3O6.95 

J.Mesot et al(2000) 

La2CuO4 La1.84Sr0.16CuO4 

N.S.Heading et al (2010) 

Magnetic excitation evolves with carrier doping 
from spin wave to hour glass excitation  

superconductor insulator 

spin wave excitation  Hourglass-shaped excitation  

Hourglass excitation has been observed in the 
two systems, however, the universality is not 
yet clear due to the different crystal structure 

LSCO YBCO 
Hourglass 
in SC phase    
High-energy 
excitation  Unknown 

Collective  
excitation 

 Unknown 

Comparison between LSCO with YBCO Bi2201-system 

Bi2201 has single CuO2 layer, 
 like LSCO 

Universality could be extracted. 

Current research

Doping dependence of low energy is similar with LSCO 

M. Enoki et al. 2013 

Motivation 

Comparing with LSCO,  
showing universality of  
high energy excitation  
we prepared dilution doped sample 
     because of clearly magnetic excitation
was observed in low energy region  

Set up 
sample:Bi2.4Sr1.6CuO6+d 

Volume: about 27g 

Equipment: ISIS-Merlin 
easily observed wide q-w range  

Temperature: 7K 

Ei=40,70,120,240 [meV] 
0.50 1.0

h (r.l.u.)

=10±4meV

=80±10meV

=40±5meV

=120±20meV
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single Gaussian fitting 

two peak separation ware not observed 
including High energy region  

k 

h 1/2 

1/2 

120meV 

2D observation data 

4meV 

26meV 

55meV 

Comparing Dispersion 
Bi2201 

Bi2201 dispersion has extreme spread 
about high energy region ~100meV 

H. Hiraka et al, 
unpublished data 

comparison of high energy spectrum 

Bi2201 energy spectrum is clearly damped and 
broadening in high energy region 

100-140meV p=0.06 130-150meV p=0.085 

Bi2201 LSCO 

Summary 
Dilution doping Bi2201 , we first observed magnetic 

excitation ~160meV. 
Increasing energy transfer, magnetic peak extreme 

broadening, and intensity  being weak. 
This result shows that Bi2201 has large J but not 

collective excitation. 
Mechanism of high-Tc superconductor cuprates 

might be common with large J of magnetic 
excitation. 
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Double neutral pion photoproduction off the proton
Qinghua HE  for the FOREST Collaboration

Research Center for Electron Photon Science (ELPH), Tohoku University

   Meson Photoproduction

 Meson photoproduction off the nucleons is one of a prime tools to study the properties of the strong interaction in the non-perturbative domain of QCD. 

Single pion photoproduction has been studied intensively to get informations for nucleon resonances especially for the ∆-excitation, while double pion 

photoproduction gives complementary informations, particularly on resonances that couple weakly to a single pion. Among three channels, the double neutral 

pion channel (γp→π0π0p) is the most selective one, which provides interesting details because Born terms are strongly suppressed and ρ meson can not 

directly decay into two neutral pions. Moreover, interesting physics involving two indistinguishable π0 system can be investigated through this channel.

Event Selection
Preliminary Results
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protonπ 0

Figure 4. Left: Two photons invariant masses m(γ1, γ2) vs. m(γ3, γ4). Right: 
Missing mass (mX) spectra for γp→π0π0X.  π0  and proton signal are clearly 
shown in invariant mass and missing mass spectra. 
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Figure 5. Up:Acceptance. Down: Total cross section for γp→π0π0p.

• Total cross section of γp→π0π0p has been obtained 

preliminarily and compared with previous data (Figure 5).

Photo Beam FOREST Detector System (90% solid angle cover)

Coil

Yoke
Fe Fence

Electron

Ti Window

Photon

Photomultiplier Tubes

Radiator

b)a)

Height of 
electron beam

H8711-10

70 mm

60 mm

4 mm

Electron
Beam

Electron

Reaction γp→π0π0p→4γp is reconstructed by detecting its final state products 
4 photons and one proton. Event from FOREST dataset survived after 
following selection condition will be accepted as true event for γp→π0π0p:  

 Background Events Subtraction

Accidental coincident events between FOREST 
and Tagging spectrometer have been eliminated 
by subtraction of scaled distributions of random 
background events outside the true coincidence 
time window.

SCISSORS III
(192 CsI)

Res. : 3% @ 1GeV

LEPS Backward Gamma
(252 Lead/Scintillating fiber)

Res. : 7% @ 1GeV

Rafflesia II
(62 Lead Glass)

Res. : 5% @ 1GeV

Bremsstrahlung photons are are generated by inserting a carbon fiber to 
1.2 GeV circulating electrons in a synchrotron ring. Scattered electrons 
are bended to Tagger system to determine the energy of bremsstrahlung 
photons with energy resolution 1-3 MeV.  

Photo beam

Target position 

• One charged cluster in time window [1,10] ns 
(Figure 1)  with respect to the average time of four 
photons (t4γ). No other clusters within [1,10] ns.

• Kinematic fitting

• Two pairs of photons with time difference within [-1,1] ns.

7 constraints are applied (4 from energy-momentum conservation and 
other 3 from invariant masses of two pions and one proton). Event with 
chi-square probability larger than 20% will be accepted(Figure 2).
The error estimation of kinematic variables are checked by PULL 
distribution (Figure 3). It is sufficiently close to a normal Gaussian 
distribution N(0,1).  

•   Invariant mass of two photons and missing mass of γp→π0π0X
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All kinematic variables are fitted to the hypothesis 
of γp→π0π0p. The fitting result of chi-square(χ2) 
probability are used in confidence level (CL) cut.
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Figure 2.  χ2 probability.

Figure 3 . Pull distribution.

Figure 1. Time difference between 
the 5th cluster (t5) and t4γ.
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Beyond the Standard Model :Aspects of 
Supersymmetry 

Wen Yin  
Physics,Tohoku University, D1 

Introduction 
  Physics history is the history of “Unification”.  
Newton unified the motion of a planet and the motion of an apple. (Gravity)  
Maxwell unified electric force and magnetic force.(Electromagnetic force) 
Weinberg and Salam unified weak interaction and electromagnetic interaction.       

  (Weinberg-Salam theory) 
String theory is expected to unify the 4 fundamental forces. 

 
  In our nature there are 2 kinds of particles. 
     Boson: the carrier of interactions            Fermion: the component of matter 
                            Can we unify these two kinds of particles?  

Boson has integer spin . Fermion has half integer spin. 
If we unify these two kinds of particles, we have to do some non trivial things like to 

extend the concept of spacetime.  
                                    SUperSYmmetry (SUSY)   
 
 On the other hand, the Standard Model (SM) in particle physics has won a lot of success, 
because SM agrees very much with the experiment. However, there are some theoretical and 
cosmological problems. 
The fine tuning of Higgs mass (Fine-tuning problem) 
There is no candidate for dark matter. 
The accuracy of gauge unification is not so good. 
SM can not be combined with gravity naturally. etc. 

If we extend SM to SUSY SM (SSM), we can solve or alleviate these problems. 
 
Also, if we believe in superstring theory in Planck scale, then our nature, which can be 
described as the effective theory of superstring theory must have SUSY. 

SUSY Algebra 
 

 

 
where are fermionic.   is the generator of spacetime translational 
symmetry. With the generator of rotational symmetry of spacetime,  forms the 
usual Poincaré symmetry which is also called as special relativity.  
 If we think of the theory with particle masses, Coleman-Mandula theorem says that 
the only extension of Poincaré algebra is superPoincaré algebra which is equal to 
Poincaré algebra + SUSY algebra. 
Taking the expectation value of the first formula on a general momentum eigenstate, 
we get 

 

 Tracing the index , we get 
 

left hand side ,  
The expectation value of  (energy) is positive or 0. 

This formula will hold whether SUSY is broken or not. Let (vacuum state) ,  

 

 
 Vacuum energy is the order parameter of whether SUSY is spontaneously 

broken or not. 
 
 Next, let’s think about a massive bosonic state at rest. 
The first formula   

 Q acts as fermionic version of creation operator in harmonic oscillator.  
 Assuming , there exist other states , , . 

 Q is fermionic  
 , , are fermionic. , are bosonic. 
There are 4 states, 2 are fermionic, 2 are bosonic. 

 
 We know 

SUSY is a symmetry that interchanges bosons and fermions. 
In SUSY theory, the number of bosonic particle states is equal to the number of  

    fermionic particle states (for nonzero momentum particles). 
The vacuum energy (cosmological constant) vanishes. 
When we extend SM to SSM, we should add particles. So some of these can be 

    dark matter candidates. 
The gauge unification accuracy can increase or decrease since SSM has different 

    particle components from SM. In fact, the accuracy increases. 

Superspace Formulation 
                  Ordinal field theory: local theory of spacetime coordinate 

  
         Spacetime symmetry          Poincaré symmetry(rotation and 

translation in spacetime) 
              Action  
          Scalar field  

SuperPoincaré algebra  is the extension of Poincaré algebra. 
We can use the analogy of ordinal field theory to formulate SUSY field theory. 

 Changing spacetime into superspace, we get the table below. 

SUSY field theory: local theory of superspace cordinate 
 

  
        Superspace symmetry superPoincaré symmetry(rotation and 

translation in superspace) 
                 Action 

 
        Chiral superfield  

 K is called Kähler potential, and W is called superpotential. The chiral superfield 
can be thought as the unification of fermionic fields and bosonic fields.  
W is holomorphic function of chiral superfield. Holomorphic function means W 
does not contain complex conjugate of  Holomorphy and ordinary 
symmetry keep W invariant under perturbative renormalization. This is called 
non-renormalization theorem.  
Thanks to this theorem, there’s  no more fine-tuning problem. So SUSY is a major 
resolution of the fine-tuning problem. 

SUSY Breaking 
SM is very consistent with the experiment. 
SUSY must be broken down spontaneously. However, if SUSY breaks down 

classically in the SSM, there would remain a sum rule for particle masses.  
  

This sum rule contradicts with the experiment.  
 SUSY can’t be broken classically in SSM sector.  

   three possibilities 
1, SUSY is broken classically in the other sector. 
2, SUSY is broken non-pertuabatively (i.e. quantumly in this case ) in our sector. 
3, SUSY is broken non-pertuabatively  in the other sector. 

Non-perturbative breakdown of a symmetry chiral symmetry breaking (maybe) 
 If 2,  our elementary particles are not all elementary and  some are composite which 
we don’t want it to be.(Although there is some work about this type.) 

We think about 1 and 3. SUSY breaking happens in the other sector. 
There should be some fields to mediate the SUSY breaking effect to our sector. 

Candidates for the “mediator”: SM gauge field, gaugino, gravity etc. 
 

 SUSY breaks   
Our vacuum has positive energy i.e. the positive cosmological constant. 

 But the cosmological constant is ~  while  
~ .We have to cancel the positive energy. There is a known mechanism. That is 
to extend a global SUSY to a local SUSY i.e. SUperGRAvity(SUGRA). SUGRA can 
produce a negative cosmological constant which cancel the positive cosmological 
constant produced by SUSY. In this sense SUSY breaking expects SUGRA. 

My Work 
 We think that gravity mediates SUSY breaking. So our model belongs to . On the 
other hand, superstring theory predicts a 10-dimensional universe with 6 compact 
dimensions so that we feel just 4 dimensions. The low energy effective theory of a 
theory with compact dimensions always has moduli fields. So in our model there are 
3 sectors, : SSM sector : SUSY breaking sector : moduli sector.  directly 
interacts with  by higher dimensional terms, and  interacts with , ,  by 
gravity. We assume a general Kähler potential correction  generated by the quantum 
correction for . The Kähler potential stabilizes the moduli field with negative 
energy which will cancel the positive energy due to the minimized superpotential in 

 in order to fine-tune the cosmological constant. Assuming squark mass ~ 10TeV(in 
order to predict Higgs mass 125GeV) we get the spectrum below. 
Sparticle (Super partner for SM particle) Mass 
Squark, Slepton ~10TeV 
Gaugino ~   

Gravitino ~  

Reference: The Quantum Theory of Fields 3,S.Weinberg 
                            Supersymmetry and Supergravity ,Wess,Bagger 
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Study of the Painting Injection including the Space Charge 
Effect for the High-Intensity Proton Accelerator 

Shinichi Kato*A), Kazami YamamotoB), Hiroyuki HaradaB), Kota OkabeB), Michikazu KinshoB) 
A) Department of Physics, Tohoku University     B) J-PARC Center 

*Email : skato@post.j-parc.jp 

Summary 

Painting Injection Modification 

Abstract 
  For the hadron accelerator, the beam loss should be minimized because the beam loss causes the activation. In the high-intensity accelerator, the space 
charge force increases and causes the beam loss.  Therefore, the Japan Proton Accelerator Research Complex (J-PARC) 3GeV rapid cycling synchrotron 
(RCS) is injected the beam with spreading the circulating beam size intentionally. This injection method is called “Painting Injection”. In order to optimize 
this method furthermore,  we are studying  with considering  the optical parameter moderation by the space charge force. 

Introduction 

Injection Method of RCS 

J-PARC 3GeV Rapid Cycling Synchrotron (RCS) 
Incoherent tune spread due to the space charge effect 

Fig Overview of J-PARC 

<RCS Parameter> 
Bunch : 2 
Inj. Energy  : 181 (400) MeV 
Ext. Energy : 3 GeV 
Repetition  : 25 Hz  
Power : 300 kw (1MW) 

 The accelerators play a role of source 
of the “high-intensity” proton beam. 

The particles go through while oscillating. 
beam 

Fig Overview of RCS 

The number of oscillation of one turn Betatron Tune ( x, y) Fig The schematic 
drawing of particle 
oscillation 

Fig Tune diagram with 
the  resonance lines of RCS 

An accelerator has the tune points where the oscillation amplitude 
increases immediately. Resonance Points (or Lines) 

 J-PARC comprises three accelerators 
and experimental facilities. 

 A repulsive force due to the charge which each particle has  
( Space charge force ) decreases the external convergent force.  

In the high-intensity accelerator… 

The tune of each particle is decreased with each different decrement. 
Incoherent Tune Spread ( incoh spread) 

we should suppress the incoh spread in order to avoid the resonance lines !! 

If the distribution is ideal “K-V distribution”, all particles receive same space charge force. 

Fig Injection area of RCS 

Fig The schematic drawing of Painting 
Injection and phase space at 1st Foil 

Fig The schematic drawing of Painting injection 
and phase space at 1st Foil 

To achieve “High-Intensity”… 
The beam is injected turn by turn dividing 235 pulses. 

Multi-Turn  
Charge-Exchange Injection  
has been adopted. 

The H- beam is injected and exchanged to proton by 
charge-exchange foil at Injection point. 

In the accelerator, the particles move 
along the phase space oval each turn.  

: Beam emittance (phase area size) 
: Twiss parameter (beam width) 

During injection, we change the injection beam position and angle depending on time.  

Fig K-V distribution 
condition incoh doesn’t spread (only shift) 

The charge density is reduced and formed uniform. : Correlate 
: Anti-
Correlate 

Painting Injection 

and Anti-Correlate Painting Injection can make the K-V like distribution !! 

 
 

 

 

The incoh spread is suppressed ! 

Horizontal 

If position and angle is moved as follow.. 

Vertical 

The Painting Area is filled with injection 
beam uniformly. 

Optical Parameter Moderation by the space charge force 
Transverse motion including space charge force satisfy the “Envelope equation” 
regardless of the distribution approximately as follow… 

External convergent 
force by Magnets 

Space charge force 

1. Applying y’ offset 
To realize K-V like distribution, 2 manipulations are applied as follow. 

2. Time function change 

Fig Anti-Corr. 
Painting injection 
for RCS 

Painting Injection is performed to let Injection beam tail 
into same emittance area for Horizontal and Vertical.  
But… 
Because the slope of  injection beam oval is opposite 
from the Ring, Anti-Correlate Painting run off the ideal 
K-V condition (present). 

Add offset to y’ (only offset) 

Fig Anti-Corr. 
Painting Conditions 

Fig Horizontal Phase space Oval by 
Envelope Eq. calculation after Anti-Corr. 
Injection 100  mm mrad) 

This Equation indicate that… 
The is changed by the space charge force. 

Particular, Horizontal Phase space oval become long and narrow in RCS. 
Phase space oval is changed. 

Fig Tune diagram and emittance 
distribution after Painting Injection 

w/o charge 

200kw power 

Present  

Fig Horizontal Phase 
space Oval by Envelope 
Eq. calculation 

w/o charge 

present 

 
beam 

When the space charge force is strong… 

To reduce the change of the oval and spread injection beam… 
Modify the time function as follow ( ) 

Tune shift and incoh  spread is reduced !! 

Injection beam less spread than expected on the Horizontal 
phase space because the oval become narrow. 

 We are studying for the Painting 
Injection including the space charge 
force in order to reduce the beam loss 
as possible. 

 It is expected that the tune shift and 
the incoh  spread could be reduced using 
existing system more than ever before.  
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Neutron scattering study on f electron states of Pr-based compounds
H. Kobayashi, K. Iwasa, 1K. Tomiyasu, 2N. Nagasawa, 2K. T. Matsumoto, 2T. Onimaru, 2T. Takabatake, 3S. Kawamura, 3T. Kikuchi, 3K. Nakajima

Dept. of Phys. Tohoku Univ., 1Center for the Advancement of Higher Education, Tohoku Univ., 2AdSM Hiroshima Univ., 3MLF Division, J-PARC Center, JAEA

Introduction

PrIr2Zn20

Γ5(5.80meV)

Γ3(0)

Γ4(2.36meV)

Γ1(5.67meV)

[1]T. Onimaru et al.: J. Phys. Soc. Jpn. 79 (2010) 033704.  [2]T. Onimaru et al.: J. Phys. Rev. Lett. 106 (2011) 177001.  
[3]T. Onimaru et al.: Phys. Rev. B 86 (2012) 184426.  [4]T. M .Kelly et al.:Phys. Rev. B 61 (2000) 1831.

Strong correlated f electron system

Localized electron

Itinerant electron

c-f hybridization effect

Various electron properties

Properties of PrT2Zn20 (T = Ru, Rh and Ir)

• Kondo semiconductor
• Valence fluctuation
• Non BCS-type superconductivity

• Heavy electron system
• Multipolar ordering

PrT2Zn20 are remarkable compounds because of low-T 
properties due to degrees of freedom.

Pr T Zn

14.3 Å

Cubic structure(Fd-3m)
local symmetry : Td 

PrIr2Zn20 : Superconductivity (TC < 0.05 K), quadrupolar ordering (TQ = 0.11 K)[1,2]
PrRu2Zn20 : No anomaly in low temperature. Structural transition (Ts=138 K) [1]
PrRh2Zn20 : Superconductivity (TC = 0.06 K), structural transition (Ts=140 K) , quadrupolar 
ordering (TQ = 0.06 K), heavy-electron-like behavior[3]

Objective

PrRh2Zn20

PrRh2Zn20   The aim of this study is to investigate the f electronic states of PrT2Zn20 (T = Ru, Rh 
and Ir) by using neutron scattering experiments.

Experiments
Samples (AdSM Hiroshima Univ.)

• PrT2Zn20 polycrystal by zinc self-
flux method.

Neutron scattering measurements

• TOPAN 6G, JRR-3, JAEA
• BL-14, J-PARC, JAEA

Results & Analysis
TOPAN kf = 2.67Å-1

Q = 3.26 Å-1

•The spectra composed of sharp peaks → Crystal field (CF) excitation
     The f electrons are well localized. 

•CF ground state is Γ3 doublet
     The f electrons have a quadrupolar degree of freedom.

PrRu2Zn20

•Well localized f electrons
•The spectra seems to be consistent with Td symmetry, but it does 
not reproduce M, χ and C/T.

Γ5(3.16meV)

Γ3(0)

Γ4(4.48meV)

Γ1(7.59meV)

PrRh2Zn20

Discussions

Γ4(2)(5.78meV)

Γ23(0)

Γ4(1)(3.48meV)

Γ1(6.77meV)

•CF ground state is Γ3 doublet
•Pr-site local symmetry becomes lower on the structural transformation (Td→T)

BL-14 Ei = 15.14 meV

Q = 1.7-1.9 Å-1

•Because PrRu2Zn20 undergoes structural transition, the CF model analysis with Td 
symmetry is not correct. We need a detailed analysis for whole understanding of the data.

•PrT2Zn20 (T=Ru, Rh, Ir) investigated in this study show clear CF excitations. We did not 
observe any significant broadening of excitations or quasielastic scattering. PrInAg2, which 
shows a large Sommerfeld coefficient 6.5 J/(mol.K)2, was confirmed to exhibit the well-
define excitation peaks between CF splitting levels with Γ3 doublet ground state[4]. The 
strong correlation between f and conduction electrons in three compounds does not give 
renormalization effect on the magnetic excitation spectra, in contrast to the conventional 
Kondo-effect systems.

Summary
•In this study, we investigated that PrT2Zn20 (T=Ru, Rh and Ir) show clear CF excitations. The 

ground states are Γ3 doublet which have a quadrupolar degree of freedom.
•The local symmetries of Pr-ion site in the three compounds are different from each other. 

Details of crystal structures in the low-T phases should be determined.

W = -0.098 meV
x = 0.47
y = 0

TOPAN
kf = 2.67Å-1  
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Peccei-Quinn invariant extension of the NMSSM

with a Higgs mass of 125GeV

Kwang Sik Jeong, Yutaro Shoji, Masahiro Yamaguchi

Department of Physics, Tohoku University

Introduction
The discovery of a new boson

A new boson was discovered at the Large Hadron Col-
lider (LHC) in July 2012; a neutral spin0 (or spin2)
boson with a mass around 125GeV. It can be the
long-sought last piece of the standard model (SM)
of particle physics, the Higgs boson. If it is true, it
should be closely tied to a mechanism of generating
the masses of the elementary particles, which would
be forbidden by the underlying symmetries.
So far the data obtained at the LHC are consistent
with the SM Higgs boson.

However, the Higgs field is just a emergency tire for the SM and detailed
research in the future may reveal what are really responsible for the mass
generation, or the spontaneous symmetry breaking.

Supersymmetry
Concepts
The supersymmetry is a symmetry relating fermions and bosons. Extending
the SM with it enables us to address some mysteries in the SM.

Gauge hierarchy problem
Being a spin0 field, the Higgs field is
very sensitive to a more fundamen-
tal theory through quantum correc-
tions. This implies that the masses
of the gauge bosons would be of the
same order as the fundamental scale.
However, since the gauge bosons have
masses around 100GeV, whereas the
gravitational scale is around 10

18GeV,
the theory seems highly unnatural.
This is so-called the gauge hierarchy
problem.

Since quantum corrections from fermions and bosons are the same in mag-
nitude but different in sign, the supersymmetry can make them cancel out
and solves the problem.

Dark matter
Many astronomical observations such
as rotational speeds of galaxies and
gravitational lensing effects indicate
that there should be a large amount
of matter in the universe that cannot
be accounted for only by the visible
well-known matters.
A supersymmetric SM often contains
a stable neutral particle and it has a
potential to explain the dark matter.

Gauge unification

The gauge coupling constants of the three fun-
damental interactions depend on the scale where
they are observed. If it is true that these inter-
actions have the same origin, these coupling con-
stants should meet at a certain high scale.In the
SM, they fail to though they approach each other.

On the other hand, in a supersymmetric SM, the match becomes much more
accurate. Thus a grand unified theory prefers the supersymmetry.

Higgs mass
The minimal supersymmetric standard model (MSSM), which is the sim-
plest extension of the SM, predicts the Higgs mass to be around 100GeV.
In this sense, the MSSM seems to be favored by the experiment. However,
a close investigation reveals that 125GeV is slightly heavy and we need to
fine-tune the parameters.

PQ-NMSSM
Philosophy
Higgs mass

A supersymmetric model need not be minimal and can contain another
gauge singlet pair. Such a model is called the next-to-MSSM (NMSSM)
and is favored also by a theoretical point of view. It has additional contri-
butions to the Higgs mass and alleviates the problem.

Tadpole problem

Since the singlet is not forbidden to couple to heavy fields in a more fun-
damental theory, it would bring the energy scale of a fundamental theory
into the model. This problem, called the tadpole problem, is overcome by
imposing a symmetry. One of the most economical way is to assign the sin-
glet a charge of the Peccei-Quinn symmetry, which is originally introduced
to solve the strong CP problem.

Constraints
Z boson invisible decay

Since the Peccei-Quinn symmetry forbids the mass term of the singlino, the
fermionic component of the singlet, the lightest supersymmetric particle
(LSP) becomes very light. This enables the Z boson to decay into a pair of
singlinos. However, the Z boson invisible decay is highly constrained by the
LEP experiments.

Higgs boson invisible decay

Also the Higgs boson can decay into a pair of singlinos but since we’ve
observed its signal, its decay mode should not dominate.

χ
0
1
χ
0
2
production

The process that the LSP and the next-to-LSP (NLSP) are produced in a
e
−

e
+ collider and the NLSP decays into the LSP and the Z boson is con-

strained by the LEP experiments.

Results
We’ve investigated three possible regions and found the 125GeV mass can be
naturally explained in this model evading all the experimental constraints.

[1] Kwang Sik Jeong, Yutaro Shoji, and Masahiro Yamaguchi, “Peccei-Quinn invariant extension of the NMSSM”, JHEP, 1204, 022, 2012

[2] Kwang Sik Jeong, Yutaro Shoji, and Masahiro Yamaguchi, ”Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM”,
JHEP, 1209, 007, 2012
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Electron Correlation Induced Spontaneous Symmetry Breaking 
in a Strongly Spin-Orbit Coupled System 

       Akihiko Sekine and Kentaro Nomura,  Institute for Materials Research, Tohoku University 

   INTRODUCTION    

   SUMMARY    

   PURPOSE    

   MODEL    

   RESULTS    

 We investigate the effect of electron correlation in a 3D 
Dirac fermion system which describes a topological phase. 

 We search for novel phases induced by the interplay of 
spin-orbit coupling and electron correlation. 

 Three-dimensional (3D) Topological Insulators 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Weyl Semimetals (Topological Semimetals)

 Spontaneous time-reversal symmetry and inversion 
symmetry breaking is induced by electron correlation. 

 This phase is considered to be the condensed-matter 
analog of the corresponding phase in the lattice QCD. 

 Effective Model for 3D Topological Insulators 
 

 
 
 

= Dirac fermion on a lattice (called the Wilson fermion) 
 

    Z2 invariant of the system   [ L. Fu, C. L. Kane & E. J. Mele, PRL 98 (2007) ] 
 
 
 
 
 
 

 Coulomb Interaction between the bulk electrons 

(a component of spinor) 

topologically nontrivial 

: trivial 

 Ground State Phase Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mean-field approximation 
 
 
 

“Gap Equation” 

Chiral (scalar mode) condensate 
Pion (pseudoscalar mode) condensate 

Analogy with 
lattice QCD 

The ground state of  the system is obtained as the stationary point of 
the free energy : 

where

The matrix        breaks both 
time-reversal and inversion 
symmetries : 

       

Electron correlation 
induces spontaneous 
symmetry breaking. 

(Fock term) 

TI Phase (m0 = -2.5) Symmetry Broken Phase (m0 = -2.5) 

 Phase Diagram with a Perturbation Term 

[ m0 = -0.3 ] TI Phase WSM Phase 

PI Phase 

PI : Poralized 
       Insulator 

magnetic impurities (or an 
external magnetic field along 
z-axis) 

Symmetry broken phase is 
robust against perturbation. 

[ A. Burkov, M. Hook 
& L. Balents, PRB 84 (2011) ] 

Bulk valence band 

Bulk conduction band 

= bulk energy gap + gapless surface states 
 

Bi2Se3  (most famous 3D TI) 
[ H. Zhang et al., Nat. Phys. 5 (2009) ] 

Surface band 

Chemical 
bonding 

Crystal-field 
splitting 

Spin-orbit 
coupling 

Strong spin-orbit coupling 
is the key to realize a 
topologically nontrivial 
phase. 

Surface states : two-component 
massless Dirac fermions 
 

Bulk states : four-component 
massive Dirac fermions 

= Three-dimensional analog of graphene 
= predicted in pyrochlore iridates (such as Y2Ir2O7) 

[ X. Wan, A. Turner, A. Vishwanath 
& S. Savrasov, PRB 83 (2011) ] 

A novel phase induced by 
the interplay of spin-orbit 
coupling and electron 
correlation. 
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↓: α-Fe peak position

Fe1.35Sb
Rapidly-quench

Impurity

Fe1.35Sb
Slow-quench

DO3型

● Mn-Ⅰ Site● Mn-Ⅱ Site● Si

Mn3-xFexSi

Mn3Si
Mn-Ⅰ　μⅠ=2.43μB

Mn-Ⅱ  μⅡ=0.27μB

S.Tomiyoshi, Phys.Rev B (1987)

Mn2.8Fe0.2Si

Fe1.40Sb, H=0.5T

Fe1.30Sb, H=1T

Fe1.35Sb, H=1T

Measured by Mossvaue TN

K.Yamaguchi, J. Phys. Soc. Jpn (1972)

M=1.6 emu/g

Fe1.35Sb
T=4.2K

α-Fe Fe1.35Sb

M(emu/g) 221.6 1.6

Fe1.35Sb
α-Fe of mix rate 0.7%

M
 (

em
u/

g)

Fe1.35Sb
H=1T

rapidly-quench

slow-quench

DO3型

● Mn-Ⅰ Site● Mn-Ⅱ Site● Si

Mn3-xFexSi

Mn3Si
Mn-Ⅰ μⅠμμ =2.43μBμμ
Mn-Ⅱ μⅡ=0.27μB

S i hi h (198 )S.Tomiyoshi, Phys.Rev B (1987)

MnMn2 82.8FeFe0 20.2SiSi

Fe normal-site

SbFe excess-site(δ)

↓: α-Fe peak position

Fe1.35Sb
Rapidly-quench

Impurity

Fe1.35Sb
Slow-quench

K.Yamaguchi, J. Phys. Soc. Jpn (1972)

The roles of excess Fe for magnetic in antiferromagnetic metal Fe1+δSb

Phys. Dept. Tohoku Univ.A, IMR. Tohoku Univ. B, IMSS KEK C. 
S-C. Choi A, H. Hiraka B, K. Ohoyama B, Y. Yamaguchi B, S. Nara A, K. Iwasa A, K. Yamada C
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 In our research, we aim to clarify the relationship between bulk properties and spin 
dynamics in itinerant-electron systems. In typical antiferromagnetic 3d metals, Cr, 
FeTe1-xSex, Mn3-xFexSi, similar magnetic excitations with anomalously steep dispersions 
are observed. We expect that the anomaly in magnetic excitation must be a common 
property in antiferromagnetic 3d metals. To confirm the universality, we investigate 
magnetism of Fe1+δSb as the other target in the antiferromagnetic 3d metals. In this 
study, we aim at clarifying microscopic magnetic properties in this antiferromagnetic 
metal Fe1+δSb by neutron diffraction. The purpose of the high-purity sample 
preparation for this purpose

Scientific Background
magnetic excitations with anomalously steep dispersions 

S.M.Hayden, Phys.Rev.Lett (2000)
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●Fe normal-site

μ=0.88±0.05μB

TN=105K (Fe1.30Sb)

Neutron diffraction
(1/3, 1/3, 0)

Magnetic peak of (1/3. 1/3. 0)

Magnetic structure of spin 120° 

T.Yashiro, J. Phys. Soc. Jpn (1973)

Group space : P63/mmc
a,b: 4.07Å      c: 5.13Å

0 100 200 300

1.0

2.0

3.0

4.0

0

T(K)

χ g
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m
u/

g)
×

10
4

Fe1.33Sb

Fe1.25Sb

Fe1.22Sb

Fe1.10Sb

Susceptibility Möessbauer 

Crystal Structure (Hexagonal)

Fe-Sb

H.Okamoto, J. Phase.Equilibria (1999)
K.Yamaguchi, J. Phys. Soc. Jpn (1972) R.Kumar, Phys.Rev. B (1985)

research object
Mn3-xFexSi, Cr,
Fe1+δSb,,,,

Specimen preparation

Bridgman furnace photo

Time

Temperature

1 week

20hour

900℃
quench

（in water）
Room

temperature
process ① Time

Temperature
3 days

1hour

900℃

1050℃ 3 days

10hour
quench

（in water）

process②

Vacuum-encapsulate Ar-encapsulate

Fe1.40Sb process  ①→① process  ①→①

Fe1.35Sb process  ① →② process  ①→①

Fe1.30Sb process  ① process  ①→①

Fe1.25Sb process  ①

quench-time few minutes few seconds

Sample creation

Encapsulate the Ar-gas to 
unclarity silica tube

 In our research, we aim to clarify the relationship between bulk properties and spin 
dynamics in itinerant-electron systems. In typical antiferromagnetic 3d metals, Cr,
FeTe1-xSex, Mn3-xFexSi, similar magnetic excitations with anomalously steep dispersions 
are observed. We expect that the anomaly in magnetic excitation must be a common 
property in antiferromagnetic 3d metals. To confirm the universality, we investigate
magnetism of Fe1+δSb as the other target in the antiferromagnetic 3d metals. In this 
study, we aim at clarifying microscopic magnetic properties in this antiferromagnetic
metal Fe1+δSb by neutron diffraction. The purpose of the high-purity sample 
preparation for this purpose

Speed up quench → We expect high purity powder

Research purpose

Fe1+δSb phece

Solid phase reaction Melting process

The typical spin excitation (Fe3Si)

M.Szymanski, J. Phys.Condens. Matter (1991)

「Weak」Antiferro Magnetic
→Magnetic moment are small
　The importance of Mn site

X-ray powder diffraction

Measurement result

Summary

Fe normal-site

Sb(Fe excess-site(δ))

●●Fe normal-site

μμ=0.88±0.05μμ μBμμ
TTN=105K (Fe1.30Sb)

Neutron diffraction
(1/3, 1/3, 0)

Magnetic peak of (1/3. 1/3. 0)

Magnetic structure of spin 120°

T.Yashiro, J. Phys. Soc. Jpn (1973)

Group space : P63/mmcG
a,b: 4.07a Å      c: 5.13Å
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Fe1.33Sb

Fe1.25Sb

Fe1.221.22SbS

Fe1.101 10SbSb

Susceptibility Möessbauer 

Crystal Structure (Hexagonal)

Fe-Sb

H.Okamoto, J. Phase.Equilibria (1999)
K.Yamaguchi, J. Phys. Soc. Jpn (1972) R.Kumar, Phys.Rev. B (1985)

Fe1+δSb phece

Weighing
excess-Fe

occupancy g
Sb

occupancy g
a c

Fe1.30Sb 0.22(1) 0.92(1) 4.1316(1) 5.1764(1)

Fe1.35Sb 0.19(1) 0.88(1) 4.12586(7) 5.17047(6)

Fe1.40Sb 0.33(1) 0.91(1) 4.1336(1) 5.1787(1)

Rietveld resultRietveld result

Fe1.35Sb
Rapidly-quench

×: obs
−:calc
−:obs-calc

Lattice constant

Lattice constant obtained from the 
Rietveld.（a,c）

Fe1.40Sb, H=0.5T

Fe1.30Sb, H=1T

Fe1.35Sb, H=1T

Measured by Mossvaue TN

M=1.6 emu/g

Fe1.35Sb
T=4.2K

α-Fe Fe1.35Sb

M(emu/g) 221.6 1.6

Fe1.35Sb
α-Fe of mix rate 0.7%

M
 (

em
u/

g)

Fe1.35Sbb
H=1T

rapidly-quenchh

slow-quench

Magnetization measurement
Ri ld l

Rietveld analyze

 Fe1+δSb

・By the rapid quench, we can see a clear anomaly in the vicinity of the TN, we have succeeded in　
creating the sample. 
・We have successfully fabricated sample to less than 3% of the precipitation Fe
・ We confirmed the shift in the composition, Thus, there is a need for a composition assessment. 

33mm
5mm

Fe1.35Sb single crystal photo

Fe1.15SbFe1.45Sb

Fe1.35Sb

Y.Shiomi, et al, Phys.Rev.Lett (2012)

In this presentation has not been 
said, we have successfully 
growing up single crystal.

Material：Fe(99.9%), Sb(99.9999%)   
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The γn→K0Λ reaction studied with an electromagnetic calorimeter FOREST

Recent years, the study of the γn → K0Λ reaction has started. Baryon resonances 
are expected to contribute to the reaction other than those to the γp → K+Λ.
Because both of the 2 particles in the final state are nautral, the kaon exchange 
and nucleon pole terms are strongly suppressed. Thus, the baryon resonance 
contribution in the γn → K0Λ is relatively much larger.

FOREST consists of three calorimeters, which cover a solid angle of 90 % in total so as to detect most 
of particles generated in the final state. A plastic scintillator (PS) hodoscope is placed in front of each 
calorimeter to identify the charge of detected particles.

SCISSORS III SPIDER IVY
LOTUS

LEPS Backward Gamma

Rafflesia II

192 pure CsI 
crystals

72 PSs
(24×3 layers) 252 Lead/Scintillating fiber

modules

18 PSs
12 PSs

62 Lead glass
cerenkov counters

Energy 
resolution ~3% ~7% ~5%

Yusuke TSUCHIKAWA  for the FOREST Collaboration

Research Center for Electron Photon Science (ELPH), Tohoku University 

Components

The γn → K0Λ→ π0π0p π-→ 4γ p π- events are selected 
by the following conditions:

 2) 2 hits on the PS hodoscopes 
  and no another neutral clusters 
  in the timing window.
 

The mass spectra of baryons: an important testing ground for understanding low energy QCD.
A constituent quark model, describing baryons with three valence quarks, well reproduces the properties of the ground state baryons.

Yet...
- Molecule-like structure of Λ(1405) 
- A mass-order-reverse problem (between N(1535)S11 and  N(1440)P11)
- Exotic hadrons: Θ+(1530) pentaquark baryon

 The data include many accidental coincidence events since the tagging
  rate is high. They are subtracted by using the sideband background 
 events which are indicated in the figure below of the timing difference
  between 4γ average timing and tagging counters.

c) Result   
 The π0 π0  invariant mass distribution is obtained for 911 < Eγ < 1150 MeV.

Why K0Λ ?

Baryon spectroscopy

A new effective degree of freedom emerges.

Analysis of the γn→K0Λ

FOREST

 3) Kinematical fitting
  The measured values of 4 gammas’ are kinematical fitted to satisfy
  the following conditions:
  

Scintillating
Fibers

PMT

Coil

Return Yoke
Fe Fence

Coil

Yoke

Fe Fence

Recoil Electron

Ti Window

 Beam

Electron Beam

Photomultiplier Tubes

Radiator

1 3 5 7 9 11 13 15 17 19 21 23
25 29

28     

27

2 4 6 8 10 12 1416 17 20 22 24
26

Photon beam
We use bremsstrahlung photons which 
are generated by inserting a carbon fiber
to 1.2 GeV circulating electrons in a 
synchrotron ring. The energy Eγ of the 
generated photons are determined 
by detecting recoil electrons.

Eγ = 750 ~ 1150 MeV for 1.2 GeV electrons
Tagging counter rate:  ~ 20 MHz 

 The K0 peak is clearly observed for Eγ > 911 MeV.
 We have about 5,000 K0 events in this point.

γ

  a) Event selection

b) Background subtraction

1) 4 neutral clusters are required. 
    The most probable pair of 2 gammas which have one’ s origin 
 in the same π0, are selected to minimize a following chi square

 Then the timing criterion tc of each event is set as 4 γ average timing 
 and the timing window is set as [-5, 15) ns from tc.
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Neutral clusters

M 2(γ1 , γ 2 ) ≡ 2E 1E 2 (1 − sin θ1 sin θ2 cos(φ1 − φ2 ) − cosθ1 cosθ2 ) = m2
π 0

M 2(γ3 , γ 4 ) ≡ 2E 3E 4 (1 − sin θ3 sin θ4 cos(φ3 − φ4 ) − cosθ3 cosθ4 ) = m2
π 0

M 2
X (γ1 , γ 2 , γ 3 , γ 4 ) ≡ E 2

X − P 2
X = m2
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R. Bradford et al., Phys. Rev. C Vol.73, 035202 (2006).
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Stephane Yu Matsushita
Department of Physics, Tohoku University

Introduction

Experimental details Results & Discussion

Conclusion
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Sample preperation
・Wafer : n-type Si(110)

LEED measurements

・Incident energy : 8 ~ 100 eV
・Resolution : ~7 meV
・Direction : -X( [110]), -X’ ([001])
・Varing the scattering angle
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(ii) HREELS spectra of H:Si(110) surface

(iii) HREELS spectra of surface phonons

Restrict phonons to the even/odd order zone.

There is no systematic investigation on the role of the glide plane.

H:Si(110)-(1×1) surface

・Two glide planes
・Stable structure

Coherent vibration of surface atoms.
Selection rules due to the “glide symmetry operation”

Aim
(a) Prepare a clean, well-ordered
      H:Si(110)-(1×1) surface.
(b) Measure the surface phonon dispersion.
(c) Clarify the role of the glide plane.

70 eV 90 eV

(i) LEED images

(iv) Surface phonon dispersion

・Etching solution : 
   NH4F(40%) + (NH4)2SO3(1%)

・Etching time : 10 min.

・Incident energy : 30 ~ 200 eV

HREELS measurements

・Vibrational modes of H atoms
77.3 meV
258.7 meV

Si-H bending
Si-H stretching

・Vibrational modes of Si atoms
58.9 meV Cs

・Vibrational modes of Contaminations
97.3 meV
156, 362 meV

Si Oxide
Hydro-Carbon

・We successfully prepared a well-ordered, ultra-clean H:Si(110)-(1×1) surface.
・Due to the glide plane, the surface modes are restricted to the 1st or 2nd Brillouin zone.
・Between the hydrogen atoms, there is an interaction along the chain, but not accross the chain.

For surfaces which have a glide plane, we need to extend the concept of “Reduced zone scheme” to 2nd Brillouin zone.

What is the surface phonon?

K.C. Prince, J. Electron Spectrosc. Relat. Phenom. 42 (1987) 217.

V. Graschus et al.,
Pys. Rev. B 56 (1997) 6482.

[001]

[110]

・Onset modes (Cs, Ct1) & Even/Odd shift (Ss, Sa, Bo, Bi, RW)
・ Anisotropic dispersion (Ss, Sa, Bo, Bi)

Selection rule due to the glide plane.
Vibrational confinement along the [001] direction.

Ss Sa

Bo Bi

a

Ct1Cs

In the reduced zone scheme, it is able to select
the wave vector of phonon in “1st Brillouin zone”.

g g’

[001]

[ 1
10

]

unit cell

glide plane

a
Glide symmetry operation

||
1/2 translation + reflection
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1.6× 10−35[m]

Aμ

gμν

Bμν

Φ

Fμν = Bμν + 2πα′Fμν

Fμν = ∂μAν − ∂νAμ

S[X] =
1

2πα′

∫

Σ

d2z∂Xμ∂̄Xν
(
gμν(X) + Fμν(X)

)

gμν

 

 

[Xμ, Xν ] = iΘμν

Xμ

Θ = −(g −F)−1F(g + F)−1

f ∗ g(x) = exp

(
i

2
Θμν∂(x)

μ ∂(y)
ν

)
f(x)g(y)

∣∣
∣∣
x=y

 

 

 

 

 

Hμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν

f ◦ g = f ∗ g − 1

12
Θμρ∂ρΘ

σν(∂μ∂νf ∗ ∂σg + ∂σf ∗ ∂μ∂νg) +O(∂3)

 

 

 

Σ

β(g)
μν = Rμν − 1

4
HμαβHν

αβ = 0

β(B)
μν = −α′

2
∇ρHρμν = 0

β(A)
μν = Gνσ∇σFνμ − 1

2
ΘρσHρσλFλ

μ = 0

X i

Xj

σ

τ

σ = 0

σ = 2π

τ = const.

[xα, xβ ]� = xα � xβ − xβ � xα = iΘαβ

 

 

 
 
 

 

 
 

H
Δ : H → H⊗H

H

F ∈ H⊗H m(f ⊗ g) := fg

F

Δ → ΔF = F ·Δ · F−1

f ◦ g = m
(F−1 � (f ⊗ g)

)
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RHEOLOGY OF BLOCK 
COPOLYMER DROPLETS

4/Mar./2013
K.Sugihara

CONTENTS

• Block Copolymer Droplets

• Outline of study

• Simulation system

• Future plan

• Summery

BLOCK COPOLYMER DROPLETS

• Chemically different subchains are combined.

• Several meso phases in melt.

• A few hundreds of nm.

• Intermediate region between particle and eld 
descriptions.

Block Copolymer?

BLOCK COPOLYMER DROPLETS

• Made with solvent evaporation process (Self-
organized precipitation)

• Structures in droplets dependent on the block ratio 
(f) and preparation conditions.

• Complex phase separation with symmetric & high 
molecular weights (even they form in lamellar in 
lms, or melts) 

Experimentally

300 nm

Macromol. rapid commun., T.Higuchi et. al. ,2010, 31, 1773-1778.

PS-PI block

BLOCK COPOLYMER DROPLETS

Temperature sweep

Unidirectionally 
stacked lamellar

20 20 30 30 

30 30 40 40 

Onion like 
lamellar

Polystyrene-polyisoprene droplets fPI=0.43

300 nm

OUTLINE OF STUDY

How to treat behavior of many 
droplets in a framework?

300 nm

Self Consistent Field (SCF) for a single droplet

Coarse grained particle simulation (e.g. Dissipative 
Particle Dynamics) for droplets

OUTLINE OF STUDY

How to treat behavior of many 
droplets in a framework?

300 nm

Self Consistent Field (SCF) for a single droplet

Coarse grained particle simulation (e.g. Dissipative 
Particle Dynamics) for droplets

OUTLINE OF STUDY
Self-Consistent Field theory

e.g.) Density of “red” homopolymer (K)

OUTLINE OF STUDY

r

Self-Consistent Field theory

Potential 
which the red segment feels @ r

Calculation of the 
Potential is “heavy”

 Mean eld

V (r) =
∑

i

V (r − ri)

OUTLINE OF STUDY
Self-Consistent Field theory

Potential: VK

Potential 
which the red segment feels @ r

VK(r) =
∑

K′
χKK′φK′ + γ(r)

K,K ′: kinds of segments

χK,K′ : χ parameter

γ: constraint force

OUTLINE OF STUDY
Self-Consistent Field theory

s=0
s=1
s=2

s=NS

s=Ns-1

# of segments: Ns

# of Points: Ns+1

Potential: VK

Statistical weight

Markov process 
(Chapman-Kolmogorov relation)

Edward equation

QK(s, r; s′r′) =
∑

exp(−βH)

=

∫
dr′′QK(s, r; s′′r′′)QK(s′′, r′′; s′r′)

QK(s, r; s′r′)

H =
3

2b2β

s′−1∑

i=s

|ri+1 − ri|2 +
s′∑

i=s

V (ri)

∂

∂s
QK(s, r; s′, r′) =

(
b2

6
∇2 − βVK(r)

)
QK(s, r; s′, r′)

OUTLINE OF STUDY
Self-Consistent Field theory

∂

∂s
QK(s, r; s′, r′) =

(
b2

6
∇2 − βVK(r)

)
QK(s, r; s′, r′)

VK(r) =
∑

K′
χKK′φK′ + γ(r)

φK(r) = C

∫ NK

0

ds

∫
dr0

∫
drNK

QK(0, r0; s, r)QK(s, r;NK , rNK
)

SIMULATION SYSTEM

• CPU + GPU hybrid system

• CPU: High calc. power per core w/ a few cores 

• GPU: Low calc. power per core w/ a few hundreds 
cores

• Switching according to simulation box size, # of 
mesh points, etc.

• C or Fortran for GPU part 

Outline

SIMULATION SYSTEM

• Explicit or implicit method for solving Edwards 
equation

• Single, multi thread or GPU execution

• System size optimization

• Cartesian or Cylindrical coordinates

• Mixture of solvent and polymers

Self Consistent Field Calculation Code

SIMULATION SYSTEM

 Constants.h
・System Size,
・Parameters, etc.

 SystemSettings.h
・Flags
・Coordinates,
・CPU/GPU, etc.

 PathIntegral.h
 ・Solving Edwards eq.
 ・Calc. density func.

 ErrorEvaluation.h
  ・Judging conversion
  ・Update of Potentials

 PhysicalValues.h (UC)
  ・Calc. free energy

 FileIO.h
 ・I/O of data & settings

 MemoryIO.h
  ・Dynamic allocation
  ・Memory access func.

Con guration (SCF4parallel)

SIMULATION SYSTEM
SCF Code (TEST RUN)

•  = 0.06

• N = 250

• ( N=15)

• fA = 0.5

SIMULATION SYSTEM

sqrt(b*b*N/6)
0 1 2 3 4 5 6 7 8

0

0.1
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Density of A segment

sqrt(b*b*N/6)
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0.9

1

Density of B segment

SCF Code (TEST RUN)

FUTURE PLAN

• Simulate the temperature sweep

• On cylindrical coordinate

• Consistency check of theory

• Construction of coarse grained particle system

• Combine behavior of a single droplet into coarse 
grained particle system 

CONCLUSION

• Block copolymer droplets are made by 
experimentally. 

• Several structures are observed.

• Con guration of simulation methods for the 
droplets.

• SCF part is already made.

• Temperature sweep will be simulate soon.
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Analysis of 85Kr concentration in KamLAND
with rollback technique
Benda Xu benda@awa.tohoku.ac.jp
Research Center for Neutrino Science, Department of Physics, Tohoku University

prompt
event

delayed
event

• 10μs buffer

• programmable trigger logic

MoGURA Electronics

• trigger efficiency
– rollback window length (longer is better)

– trigger threshold (lower is better)

• data flow, grows with efficiency (lower is better)

Balance

• applied after a cut based onmedian absolute deviation

•K=2
•O(n2)
•minimizing total totss, within-cluster sum of squares

K-means 1D
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Temperature dependence of THz conductivity (10K-300K)  and 
 fitting of the spectrum by LD model   

LD model is not suitable at 
low temperature 

 Different from weak localization? 
kfl=0.98 (10K) 

σ

300 K 
250 K 

150 K 
100 K 

200 K 

EG 0% 

σ

100 K 
80 K 
40 K 
10 K 

EG 0% 

σ

300 K 
250 K 

150 K 
100 K 

200 K 
EG 15% 

σ

100 K 
80 K 

40 K 

10 K 

EG 15% 

THz conductivity is well  
reproduced by LD model  

 Weak localized state 

kfl=0.98 (10K) 

 σ1(0) <0 
kfl=0.96 (40K) 

 σ1(0) <0 

Solvent effect on temperature dependence of Terahertz conductivity in 
conducting polymer PEDOT:PSS thin film 

Abstract 
 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is one of the most successful conducting polymers because of its stable high 
conductivity and water solubility. However, its mechanism of carrier transport is still poorly understood. We measured DC conductivity and dependence on 
EG concentration of THz optical conductivity about PH 1000 grade. Moreover the temperature dependence of THz conductivity of PEDOT:PSS PH grade 
films from 10 K to 300 K by THz time domain spectroscopy and infrared-ultra violet spectroscopy at room temperature to understand the effect of the 
ethylene glycol (EG) on the carrier transport which improve the crystal structure and morphology of PEDOT:PSS films resulting in the DC conductivity 
enhancement. The frequency dependences of THz conductivities were well explained by the localization modified Drude (LD) model at higher temperature 
region which describes the electrical conduction of the weak localized carrier state. On the other hands those at lower temperature deviate from LD model.  

  
 

 

ASI RIKEN1, Grad. Sch. Sci. Tohoku Univ.2, IMR Tohoku Univ.3, Univ. Yamanashi4  
Yusuke Yamada1,2, Masatsugu Yamashita1, Takahiko Sasaki3, Hidenori Okuzaki4, Chiko Otani1,2 

It is important to understand how and why we 
can improve the conductivity 

PEDOT:PSS {Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)} 

It is important to understand how and why we
can improve the conductivity

PEDOT:PSS {Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)}

Mechanism of high conductivity is unknown 

• Water soluble 
• Thermally stable 
• High conductivity  

In aqueous solution 
After deposition 

PSS PEDOT 

 <2>:Temperature dependence of THz-IR Spectroscopy 
(PH grade) 

Temperature dependence of IR Spectrum (100K-300K)  
IR reflectance (300K) 

EG0% 

EG 15% 

Plasma reflection 

EG 0% 

EG 15% 

IR transmittance (100K~300K) 

No temperature dependent IR transmittance 
No difference in the condition of EG Metallic state in PEDOT chain? 

M. Yamashta et al., Appl. Phys. Lett. 99, 143307(2011) 

L
l

lk
C

F

p 11 222

2
0

1

1lkF A weakly localized carrier state 

1lkF Metal 

L : Diffusion length within a period of  
      the incident radiation 
C  : ~1 
L  = (D/ )0.5 

D= l2 =vF
2/(3 )  Diffusion coefficient 

L  = vF/√Γ  2* 1
lk

C
m

e

F
*

0

2

m
eNc

p l=vF/Γ 

K. Lee and A. J. Heeger, Phys. Rev. B 48, 14484 (1993). 

kFl: The ratio of the wavelength of the  
       electron  wave scattering length 

Localization-Modified Drude Model (LD model) 
Real part of optical conductivity in LD model 

1lkF

<1>: EG concentration dependence of DC and THz  
conductivity (PH1000 grade) 

conductivity PH1000>>PH 

EG  Concentration 0% 5% 10% 15% 20% 25% 50% 
Film thickness (nm) 560.5 567.2 573.0 596.8 562.6 522.2 512 
Dc Conductivity (S/cm) 1.6 362.0 486.1 464.2 445.5 428.4 383 

DC conductivity 

σ

THz  conductivity 

 EG concentration and DC conductivity   

σ

Model fitting by LD model  

THz conductivity and IR reflectance spectra are well reproduced by LD model  

DC conductivity and THz conductivity   

Touch panel Solar cell 
Application 

Development toward high conductivity 

Analysis   

IR reflectance  THz  conductivity  
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Introduction Method

Result and discussion

Conclusion

Spin Pumping in High Tc Superconductor La1.85Sr0.15CuO4 thin films Spin Pumping in High Tc Superconductor La1.85Sr0.15CuO4 thin films 
S.M. Haidar1 , Y. Kajiwara1, Y. Shiomi2 and E. Saitoh1,2,3,4

1 Institute for Materials Research, Tohoku University, Sendai, Japan, 2 WPI-Advanced institute for Materials Research, Tohoku University, Sendai, Japan, 
3 CREST, Japan Science and Technology Agency, Tokyo, Japan, 4Advanced Science Research Center, Japan Atomic Energy Agency ,Tokai, Japan. 

Spin Current

JS = J↑–J↓

down spin

up spin

Spin current

A flow of spin angular momentum 
no net charge current (free from 
Joule heating)

Charge current

A flow of charge current
with random spin

JC = J↑+J↓

Inverse Spin Hall Effect
Electric current converted from 
spin current

S. O. Valenzuela and M. Tinkham, nature, (2006)

Inverse Spin Hall Effect
Spin current source by 
processing moment

Y. Tserkovnyak, A. Brataas and G. E. Bauer, PRL (2002)
E. Saitoh, M. Ueda, H. Miyajima and G. Tatara, APL (2006)

Sample fabrication
La1.85Sr0.15CuO4 sample has been 
deposited by Pulse Laser Deposition 
(PLD) process on SrLaAlO4 substrate.

PLD deposition condition for La1.85Sr0.15CuO4 sample at (001) direction:

Deposition Temperature    :       775℃

Deposition Pressure          :       1.2×10-1 Torr

Deposition frequency         :       4Hz 

Post deposition annealing  :      60min @ 400℃, 400 Torr

Fabrication for spin pumping:

LSCO LSCO

10nm thick Permalloy (Ni81Fe19) layer has been deposited 
on LSCO (La1.85Sr0.15CuO4) by evaporation process. 

RHEED pattern of La1.85Sr0.15CuO4 at (001) XRD analysis
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06

) Thin film of 
La1.85Sr0.15CuO4

single crystal at 
(001) direction has 

been fabricated 
successfully by 
PLD process.

Thin film properties

Spin pumping
FMR signal of Py/LSCO bi-layer Damping constant vs. thickness
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H. Nakayama et al., PRB (2012)
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Pt

1. The Gilbert damping Constant αeff for LSCO is ~0.018 which is lower than that of  Platinum.
2. From calculation, mixing conductance g↑↓ and spin diffusion length λ is predicted as ~5×1012 (m-2) and ~35nm.  
3. Experiment  on LSCO at lower thickness is necessary to verify the prediction.  
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Study of B0→DK*0(892) for φφ3 extraction at Belle
 Kentaro Negishi  (Physics, Tohoku University)  4th Mar. 2013   @ 2013 GCOE symposium  

CKM(Cabbibo-Kobayashi-Masukawa) matrix

Unitary condition

U = (u, c, t) 
D = (d, s, b) 
UL, DL : Left handed

U

D

W

Lint = − g√
2
(ŪLγμVCKMDLW+

μ ) + h.c.

VCKM =

⎛

⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎠

VCKMV †
CKM = 1

φ2/α

φ1/βφ3/γ

VudV
∗
ub

VtdV
∗
tb

VcdV
∗
cb

φ1 = (21.15+0.90
−0.88)

◦

φ2 = (89.0+4.4
−4.2)

◦

φ3 = (68+13
−14)

◦

φ3 ≡ arg
(

VudV
∗
ub

−VcdV ∗
cb

)

∼ − arg(Vub)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

Decay B± → DK±

B−

K−
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D → K+π- result

Lagrangian of charged current weak interaction 

Unitary triangle

φ3 effect

Unitarity triangle is described on complex plane, 
and represents CP-violation. 
To understand CP-violation, 
the angles of this triangle should be measured precisely.
In the present limits, 
measurement accuracy of φ3 is not so good. 
Need to study more for φ3. 

1.  More effect of φ3 
2.  Less signal events → Large backgrounds

I perform 2D fit for ΔE and NB’. 
NB’ is one of the parameter for background suppression. 
In suppressed mode, there is no signal.

I obtain RDK* and 95 % C.L. upper limit. 
 
 
I update RDK* upper limit world record. 

Favored mode
Suppressed mode

RDK∗ ∼= Γ(B0 → [K+π−]DK∗0) + Γ(B̄0 → [K−π+]DK̄∗0)
Γ(B0 → [K−π+]DK∗0) + Γ(B̄0 → [K+π−]DK̄∗0)

= r2
S + r2

D + 2krSrD cos(δS + δD) cos φ3s φ3
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Suppressed mode

RDK∗ = (4.1+5.6+2.8
−5.0−1.8) × 10−2

< 0.16

NB’ > 3 NB’ > 3|ΔE| < 0.3 GeV |ΔE| < 0.3 GeV

1 row, 3 column elements

Where, I define f = K-π+.

φ3 is measured with the decay include b→u transition. 
e.c. B±→D(*)K± 

Influence of CP violation is expected to appear 
due to the interference between the two amplitudes 
of D0 and D0 decays into a common final state.

Signal 
ΔE ~ 0 Signal Signal 

ΔE ~ 0
Signal

_

It was understood that B DK, D Ksππ 
can be detected but D decays into Ksππ  
via certain intermediate processes. 
   (e.g. D K*+π- [Ksπ+]K*+π-, 
           D ρ0Ks [π-π+]ρ0 Ks  … etc.) 
These processes should be divided.

When D decays into 2 particles, and one of them  
continues to decay furthermore into 2 particles, 
the reconstructed mass of the correct pair 
combination yields a mass of a certain particle. 
 

Therefore to verify intermediate states, the plot 
of combination A versus combination B is used. 
This is the so called Dalitz plot which is used to 
extract the value of φ3. 
 

This method of analysis is the first measurement 
of φ3 using model-independent Dalitz analysis of 
D → KSπ+π− from B± → DK±. The data sample 
used is 710 fb−1 Belle collected. In the super-B 
factory era, φ3 with this method will be 
dominated by systematic error, esp. Model error. 

?

m+       m-

KS π+ π-

D0~

This RDK* indicates small rS value. 
I’ll check rS value with more sensitive way 
D→KSππ Dalitz plot analysis.

D0 → KSπ+π-

However, the binned approach allows not only 
to get rid of the model error, but also to reduce 
the systematic uncertainties. In my analysis, I 
try to develop the analysis procedure that 
minimizes the systematic uncertainties, in 
view of the future high-precision analyses at 
the super-B factory where systematics can 
become a limiting factor. 
 

In model-independent Dalitz analysis(binned 
method), I take account the signal events 
number, and obtain CP asymmetry for each 
bin. Each δD for bin is measured, it is 
equivalent to obtain sixteen ADK*(= 2rSrDsin(δS
+δD)sinφ3/RDK*). corresponding bin δD value. 
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 Background 
• Organic Spintronics 

 
 
 
 
 
  

• Key issues in Organic Spintronics 
 
 
 

 Purpose 
                                                                                   
 
 
                                                     
                                                          
                                                 
   

Model & Method 

On-going Research 

Polaron Dynamics Properties with Magnetic         
Impurity in Conjugated Polymers 

 Wenjing Min⃰ ,†and Sun Yin⃰ 
       ⃰  Department of Physics, Shandong University, Jinan, China 
     † Department of Physics, Tohoku University, Sendai, Japan 

(Present supervisor: Sumio Ishihara†) 

 Spin-filter Effect caused by magnetic impurity 
     by adjusting its potential values(V↑, V↓) 

Charge Center Evolution 

 Model 
• One-Dimensional extended Hubbard Model 
 
 
 

 
                    
                    t : transfer integral 
                          U : on-site Coulomb interaction 
                          V : neighbouring-site Coulomb interaction 
 
• Magnetic Impurity 

 
 
 
 

Method 
time-dependent Hartree-Fock approximation 

Spin Density Evolution 

Introduction Results 
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Organic  
Spintronics 

Organic Functional 
Materials 

Spintronics 

Generation transportation probe and manipulation 
of spin signals in organic functional devices  

Clebar da Silva et. al., Phys. Rev. B65, 094304 (2002) 

charge transport 
manipulated by impurity 

 
No spin signal 

Spin transport manipulated by Magnetic impurity 
doped in the polymer chain 

m : magnetic impurity location 
Vm : magnetic impurity potential 

asymmetric values of impurity potential when spin-filter effect happens 
caused by strong electron-phonon interaction in organic polymers 

Application 

Summary 

 spin-Organic Light Emitting Diode theoretical model   
     based on the spin-filter effect caused by two magnetic 
     impurities(    ) in a polymer chain 

Collsion of negative and positive polaron 
with antiparallel spin in region II 

largest yield of singlet exciton 

• Spin-filter effect occurs with the presence of magnetic impurity 
• Yield of singlet exciton is largest in the spin-OLED model 

 Photo-induced cooperative phenomena in correlated  
    electron system 

• Photo-induced superconductivity phenomena 
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Introduction
Organic Solid Lasers

Mechanically Flexible

Low Money Cost Color tunable

Biocompatible

Gain Property (Crucial Factor)

Stimulated Emission Amplified Spontaneous Emission

Electrically driven OLs (Still a challenge)

Produce sufficient 
exciton density

High Carrier Mobility

Reduce the 
nonradiative losses

High Luminescent Efficiency

Potential Reasons

Conclusions

Experimental Processes

1 Department of Science, Tohoku University, Japan
2 WPI Advanced Institute for Materials Research (WPI AIMR), Japan

Investigation on Gain Properties of Organic Single
Crystals towards Electrically Driven Lasers

Hui Shang1*, Susumu Ikeda2, Kanagasekaran Thangavel1, Hidekazu Shimotani1, Kazuaki Oniwa1, Tienan
Jin2, Naoki Asao2, Yoshinori Yamamoto2, Hiroyuki Tamura2, Ikutaro Hamada2,

Kenta Abe,1 Masayuki Yoshizawa,1 Katsumi Tanigaki1,2

ASE Characterization (Previous Work)

Investigate the reasons of dual gain narrowing peaks

Research Focus

Amplified Spontaneous Emission

Quartz SubstrateSingle crystal

Laser pump (400nm)

Probe white light

Laser beam: purlse 100 fs
energy density 760 J/cm2

Probe light: delay time 0.5 ps

Transient Absorption

S

S

O
S

BP2F O
O

New Materials

Light Emitting Filed Effect Transistor

Organic Single Crystal
Drain (Ca)Source (Au)

A

+
+ + + + +

VDS
VGS

Buffer Layer
Insulator (SiO2)
Gate (Doped Si)

+

BP2TBPFT BP2F

Two Parts of Delocalized Conjugation of Electrons

BP2T

BPF
T

BPTBPT

BP2T

BPT BPF

BPFT

BPF BPF

BP2F

Singlet Singlet Annihilation
900 8000

Saturation Behavior

544 nm 512nm

Exponential Behavior

S1+S1 Sn* +S0

Sn* S1 S0

The gain narrowing peaks 
are re-absorbed in BP2T 
and BP2F single crystals.

Self Absorption

Exciton Diffusion radius

Exciton

Molecular

Exciton density at 216μJ/cm2

pump laser power

Wavelength of fluorescent
spectrum is determined by
degree of delocalization

BPFT spectrum dose not 
cover those of BP2T and 

BP2F as expected.
T. J. Dingemans, et al., Synth.

Mater., 171, 105, 1999..

Non radiated process

Singlet-Singlet 
Annihilation can only explain 
the saturation behavior of 

the peak at 544nm.

D. FIchou, et al., Adv. Mater.,
1178, 9, 1997..

The number of gain narrowing peaks are determined by  
re-absorption.

BP2T

Single crystal has
long distanced

light propagation

Thin film shows
original fluorescent

spectrum

2013
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On the pulsation modes of OSARGs in the LMC 
 

Masaki Takayama 
Department of Astronomy, Tohoku University 

Abstract 
 Wray et al. (2004) and Soszynski et al. (2004) found a number of 
red giant variables in the Galactic bulge and the LMC/SMC 
showing relatively small photometric amplitude and irregular
(multi-periodic) variability. Such variables ware named “OSARGs
(OGLE Small Amplitude Red Giant variables)” after the 
observation campaign, “OGLE”. Three and four ridges ware appear 
on the Period-luminosity planes of RGB OSARGs and AGB 
OSARGs , respectively due to their multi-periodic variability. 
 In this poster, comparing the periods and period ratios of the RGB 
OSARGs with our theoretical models, we show that their three 
ridges(b1, b2, b3) on the PL plane correspond to the radial first, 
second and third overtone, and nonradial dipole P4 and quadrupole 
P2 mode. As a result of this, we also show to obtain the initial mass 
range of ~ 0.9 – 1.4Msun. Using the Mass - Luminosity relation, 
we have found that the scaled optimal frequency, ν_max, for the 
solar like oscillations goes through roughly the middle of the three 
ridges on the PL plane. It suggests that the stochastic excitations are 
likely the case of the pulsations in OSARGs.  

2. Models 
 We have obtained linear nonadiabatic radial 
and nonradial pulsation periods for envelope 
models along the evolutionary tracks 
calculated by the MESA code(Paxton et al. 
2011) with several initial masses adopting a 
mixing-length of 1.5 pressure scale height. 
We have adopted the chemical composition 
(X, Z)=(0.71, 0.01) for the LMC and used 
OPAL (Iglesias and Rogers 1996) opacity 
tables.

3. Data selection 
 We have obtained the pulsation periods and V- and I- band mean photometric magnitudes of RGB OSARGs
(~45,500) of the LMC from OGLE-III. Some OSARGs have Long Secondary Periods(LSPs) that are 
mysterious long period(~ 500 – 1500 day) unsettled variable phenomenon. We have excepted stars having 
larger period than log10 P(day) = 2.1 and smaller period ratios then 0.4 then we have obtained non-LSP 
OSARGs(~8,500).

1. OSARGs 
 OSARGs are usually within the period range of ~ 10 – 100 
days and feature multi-periodic variability. Typical values 
of period ratios of RGB OSARGs are ~ 0.5, 0.7, 0.9 and 
0.95. The period ratios of ~ 0.5 correspond to the b3/b1 
while ~ 0.7 correspond to the b1/b2 and b2/b3. Soszynski et 
al. (2004, 2007) showed that each of the sequence b2 and 
b3 has two narrow sub-ridges in addition to the main ridge, 
and they concluded that the period ratio of ~ 0.9 and 0.95 
was consistent with the pair of the main ridge and the sub-
ridge. 

4-1. Mode identification(radial mode) 
 Since the pulsation period itself depends on stellar radius 
and mass, the period ratios are useful for determining 
pulsation modes, while pulsation periods are used to 
determine the appropriate luminosity (or mass) ranges.   
 Fig. 1 shows comparisons with the radial pulsations in the 
Period - Period Ratio diagram(Petersen diagram) for RGB 
OSARGs, respectively.  From these figures we conclude that 
radial 1st, 2nd and 3rd overtone correspond to b1, b2 and b3, 
respectively. 

Fig. 1 Petersen diagram of 1.1Msun red giant models 
are compared with RGB OSARGs. Numbers written 
along lines indicate log(L/Lsun). 

4-2. Mode identification(nonradial mode) 
 Since period ratios larger than ~ 0.9 ware not explained by radial pulsations, we have considered nonradial 
pulsations. The presence of such high period ratios indicates that each ridge in PL plane might consist of more than 
one mode. Figs. 2 and 3 show period ratios obtained between dipole and radial modes, and quadrupole and radial 
modes, respectively for 1.1Msun RGB models. According to Fig. 1, we have considered only luminosity range of 
3.0 < log(L/Lsun) < 3.15 for 1.1Msun models corresponding to RGB OSARGs. Those figures show that the 
presence of dipole P4 mode in the b3 ridge correspond to a period ratio of  ~ 0.9 while the presence of quadrupole 
P2 mode in the b2 ridge correspond to a period ratio of ~ 0.95. In addition the pair of dipole P4 and radial 2nd 
overtone and the pairs of quadrupole P2 and each radial 1st  and 3rd overtone are consistent with a period ratio of ~ 
0.7.  

Fig. 2 Period ratios between dipole P1 – P4 and 
radial modes for 1.1Msun RGB models 
compare with RGB OSARGs

Fig. 3 The same as Fig. 2 but for quadrupole modes

5. Discussion 
 Even if nonradial pulsations are considered, evolutionary models with an initial mass correspond to 
only a small part of each ridge on the period – period ratio planes. Therefore we need to consider 
deferent masses. Fig. 4 shows period luminosity relations of radial 1st – 3rd and nonradial dipole P4 and 
quadrupole P2 mode for 0.9, 1.1, 1.4Msun RGB models. Each mass models is consistent with three 
OSARG PL ridges in deferent luminosity range, respectively. We thus have concluded that initial 
masses of  RGB OSARGs should range from 0.9 
– 1.4Msun. As a result of this, we have obtained 
the (initial)mass – luminosity relation: 
 
Log(L/Lsun)=0.91(M/Msun)+2.05 – (1) 
 
 The black dashed line in this  figure  shows  the 
scaled optimal frequency,  ν_max,  for solar like 
oscillations computed by using equation (1) and 
the  effective  temperature  at  each evolutionary  
phase and it goes through roughly the middle of 
the three ridges.  It suggests  that  the  stochastic  
excitations are likely the cause of the oscillations 
in OSARGs.  

Fig. 4 Period - luminosity diagram of 0.9, 1.1 and 1.4Msun RGB 
models and the ν_max. The luminosity range for each mass 
models are determined in 90% of the b3 stars included
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6. Conclusion 
 Comparing the RGB OSARGs in the LMC with linear nonadiabatic 
radial and nonradial pulsation periods and their period ratios, we have 
found that radial 1st, 2nd and quadrupole P2, and 3rd and dipole P4 mode 
for RGB models correspond to the sequence b1, b2 and b3 of  RGB 
OSARGs, respectively. A luminosity range that is consistent with 
OSARGs PL relations differs by stellar mass. To explain the broad of 
the ridges or sequences of period – period ratio and period – luminosity 
relations, we have obtained the (initial)mass range of 0.9 – 1.4Msun. 
Moreover, we have obtained the (initial)mass – luminosity relation of 
RGB OSARGs as equation (1) by considering the mean values of the 
luminosity range of each initial mass. Using equation (1), the scaled 
optimal frequency, ν_max, for solar like oscillations goes through 
roughly the middle of the sequence b2 and it suggests that the stochastic 
excitations are likely the cause of the oscillations of OSARGs. Recently, 
the evidence of solar like oscillations have been found in a lot of lower 
luminous red giant variables by CoRoT and Kepler. However,  
oscillations of Mira variables(the most luminous red giant variables) 
have been argued to be caused by κ – mechanism (self excitation) for 
hydrogen in outer layer of the star. OSARGs are much luminous than  
solar like oscillating red giant variable stars but a little dimmer than 
Miras.  Those things suggest that OSARGs would be the most luminous 
solar like oscillators along red giant variables and be available to verify 
a convective theory. 
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Construction of Global Magnetic Field Structure Model
in Spiral Galaxies with Three-dimensional MHD simulations

●S. Nakamura, M. Hattori, T. Morishima (Tohoku Univ.)

The 5th GCOE International Symposioum on “Weaving Science Web beyound Partice-Matter Hierarchy” SENDAI, JAPAN, 04-06 MARCH 2013

We carried out global three-dimensional idela magnetohydrodynamic simulations for galactic gaseous disks in the gravitational 
potential of bulge, disk, halo and spiral arms. We considered radiative cooling energy loss of interstellar medium(ISM). 
Synchrotron intensity & polarization observations show magnetic fields in spiral galaxies are along with spiral arms. 
Our numerical results indicate that isothermal shocks generate in spiral arms and magnetic fields are amplified due to these shocks. 
We expect this results consist with observations.

flowing ISM

Model for density(upper panel), potential(lower pannel) 
in spiral potential (Roberts 1969)

Density distribution 
Disk : magnetohydrodynamic equilibrium torus 
         threaded by weak toroidal magnetic fields (T~104K, β~100)
Halo : isothermal hydrostatic equilibrium (T=106K)
Gravity : Miyamoto-Nagai’ s axisymmetric potential including DM
             + spiral arm potential Φsp (Wada et al. 2011)

εsp=0.02, z0=0.3kpc, m=2, Ωsp=12.2km/s/kpc, isp=15°, r0=1kpc are
spiral potential strength, scale height、the number of arm、patern angular velocity, pitch angle, 
scale radius.

Abstract

contour : total intensity
lines : B vector
(Fletcher et al. 2011)
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Cooling function. Here μ=0.62 (solar abundance).
We used part of 104K<T<106K.  

temperature(K)

We carried out 3D simulations of the time evolution of galactic 
gaseous disk in non-axisymmetric potential. We maintained galactic 
shocks over 3Gyr taking into account spiral potential and ISM cooling.
Magnetic fields are amplified due to these shocks and β stays aroud 
5. Our results are consistent with other numerical  simulations.

Numerical Result 

We found that isothermal shocks generate along spiral arms and 
magnetic field lines concentrate these shock fronts. 
We also found magnetic energy is amplified in disk. Plasma β
(=Pgas/(B2/8π)) decreases and stays around ~5.0.
Toroidal magnetic fields reverse in z=0 equatorial plane due to 
magneto-rotational instability(MRI). Han et al. (2002) pointed out 
Milky Way galaxy magnetic fields reverse in equatorial plane
with rotation measure(RM) observation. After the amplification of
magnetic energy saturates, magnetic flux is rise from disk
to halo by Parker instability. Nishikori et al. (2006), Machida et al. 
(2013) carried out global 3D MHD simulation and showed same 
results.

Time evolution of volume-averaged plasma β 
for 5kpc<r<8kpc, 0<φ<2π, 0kpc<z<0.15kpc

Initial density distribution in r-z plane.

Numerical Scheme : MacCormack(time, space 2nd order accuracy)
                               + artificial viscousity 
Simulation Region : 0kpc<r<56kpc, 0<φ<2π, 0kpc<z<5kpc 
                             (cylindrical coord., z=0 symmetric bounday)
ISM cooling : Raymond, Cox & Smith 1976 (104K<T<106K)
                    0 (otherwise)
                    applied disk region(white dashed line box)

3.0Gyr
Introduction & Motivation
In spiral arms, gravitational potential is deeper than disk average 
about 2-10%. ISM go through these potentials, isothermal shocks
generate. Synchrotron radiation intensity & polarization 
observations suggest that magnetic fields are amplified and 
concentrate on shock front. We examined effect of spiral 
gravitational potential on the nonlinear evolution of galactic 
magnetic fields, we choosed magnetohydrodynamic equilibrium 
state in axisymmetric potential for initial model in order to 
investigate physical process of state transition. 

Simulation Model

References
Fletcher et al. 2011, MNRAS, 412, 2396F
Han et al. 2002, ApJ, 570L, 17H
Machida et al. 2013, ApJ, 764, 81M
Nishikori, H., Machida, M., and Matsumoto, R. 2006, ApJ, 641, 862N
Raymond, J. C., Cox, D. P., and Smith, B. W. 1979, ApJ, 204, 290R
Roberts, W. W. 1969, ApJ, 158, 123R
Wada, K., Baba, J., and Saitoh, T. R. 2011, ApJ. 735. 1W

clockwise counterclockwise

density & B line density

magnetic energy mean B

Summary & Discussion

Bφ in r-z plane red : positive
                      blue : negative

1.5Gyr

3.0Gyr
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The Prolate dark halo of Andromeda galaxy
Kohei Hayashi and Masashi Chiba 

1.Why Andromeda? 
 The Milky Way and its nearest neighbor Andromeda provide a unique 
laboratory to test Lambda-Cold Dark Matter (LCDM) theory of galaxy 
formation and evolution. In particular, LCDM models, as a current 
paradigm of structure formation in the Universe, predict universal 
density distribution for a galaxy-sized halo as well as the presence of 
numerous subgalactic halos in it, as a consequence of hierarchical 
assembly process of dark matter. It is thus of importance to derive how 
dark matter is actually distributed in a galaxy scale like the Milky Way 
and Andromeda, to get useful insight into the role of dark halos in 
galactic structure and evolution in the framework of LCDM models. 

ABSTRACT The 5th GCOE Symposium 4-6/03/2013
 In order to obtain more realistic mass distribution of a dark halo in our nearest giant, we adopt axisymmetric mass models constructed by 

Hayashi & Chiba (2012) and apply these models to latest kinematic data of globular clusters and dwarf spherical galaxies in the halo of M31. 
  Applying our model to Andromeda galaxy, we find that the most plausible cases for Andromeda yield not spherical but prolate shape for its 
dark halo. This result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar 

streams,  which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.   

3.Model  
Stellar density 

q’ is  a projected axial ratio. 
γ=3.5 is best-fit power law 
value. 

Dark halo 

Q is  an axial ratio, bhalo is 
scale length and ρ0 is a scale 
density. For ρ0, We replace it 
with M(<200 kpc), which is 
mass within 200 kpc.     
These are free parameters.

For (α,δ): We confine ourselves 
to plausible density profiles: SIS 
with (α,δ)=(-2,0), NFW with 
(α,δ)(-1,-1) and HYBRID 
  with (α,δ)=(-2,-0.5).

For axial ratio, q’, we apply 
 the inertia tensor method as 
implemented by Allgood+06. 
As a result, axial ratio of  
Andromeda halo’s stellar 
 density indicate q’ =1.18.

4.Data analysis  
We use a sample of 91 globular clusters and 15 dwarf galaxies 
in the halo of Andromeda. 
For the kinematic data of  
GCs and dSphs, we  
adopt Revised Bologna 
Catalogue of M31 GCs 
 and Tollerud+ 2012,  
respectively. 
 
Maximum likelihood  

                       analysis
To obtain halo parameters 
 of our mass models by  
comparing with observational data, we employ a maximum likelihood 
method.

5. Prolate dark halo in M31  

2.The motive of this study  
 Until now, most of existing mass models 
for Andromeda's dark halo have 
assumed spherical symmetry, for the 
purpose of simply estimating its total 
mass. However, LCDM models predict 
non-spherical virialized dark halos (right 
figure) in this galaxy scale. We thus need 
to consider more general models to set 
more realistic and new limits on global 
shape and profile of a dark halo. 

LCDM predicted galaxy-sized 
 dark halo by N-body simulation  
(Jing & Suto 2000)

Zentner+ 2005

6. Summary  

5-1. Results of Maximum likelihood analysis 

5-2. Q vs. M(<200 kpc) and Q vs. bhalo with NFW model 
Above left and right figures show the likelihood contours Q-M(<200kpc), Q-bhalo, respectively. 

5-3. Comparison with LCDM simulation 
 In this work, we find that dark halo in M31 is  
elongated along the pole of the its disk. This  
result is consistent with prediction from LCDM 
based N-body simulation (e.g. Zenter+ 2005). 
In particular, Zenter+ 2005 found that subhalos  
are distributed anisotropically and preferentially located 
along the major axes of the triaxial their host halos. Therefore, 

our result may contribute valuable evidence for 
interpreting spatial distribution of dwarf satellites  

in Andromeda.    

 We adopt axisymmetric models constructed by Hayashi & Chiba 
(2012) and apply these models to latest kinematic data of 
globular clusters and dwarf spheroidal galaxies in the halo of 
Andromeda. 
 We find that the best fitting cases for Andromeda’s dark halo 
yield prolate shape and are elongated along perpendicularly to 
the plane of the its disk. 
  This result is profound in understanding internal dynamics of 
halo tracers in Andromeda, such as orbital evolutions of tidal 
stellar streams, which play important roles in extracting the 
abundance of CDM subhalos through their dynamical effects on 
stream structures. 
  In the near future, planned surveys of Andromeda's halo using 
HSC and PFS will enable us to discover new halo objects 
(globular clusters, dwarf galaxies and tidal streams) and 
measure their accurate kinematic data, thereby allowing us to 
obtain tighter limits on the dark halo distribution in Andromeda.

.

We find that the most plausible cases for Andromeda 
yield not spherical but prolate shape for its dark halo.  

These results suggest that prolate dark halo would be significant 
results, although it is difficult to determine the shape parameter, Q. 

Tohoku University Astronomical Institute
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Summary
We constructed a new formulation of Bianchi type I spacetime in LQC.
The formulation extracts the physical degree of freedom.
Therefore we can easily construct the set of all physically distinct solutions.

In addition to the universes which evolve into the classical universes,
we found the cyclic and the stationary solutions which are dominated
by the quantum effect.

The ‘probability’ for having the isotropic universes are estimated.
Although the result is negative, if we consider more realistic stuation,
LQC can explain the present isotropy by giving the ‘actual’ upper limit.

As well as the isotropic model, the initial singularity problem is resolved
by replaced with the initial bounce. Although the anisotropy is preserved,
the universe is not symmetry across the bounce.

Solution space of
Bianchi type I spacetime

in Loop Quantum Cosmology

The Bianchi type I spacetime is the most simple model of spacetime with
spatial anisotropy. We invetigate behavior of the solutions of quantum 
Bianchi type I spacetime with a massless scalar field within the frame work 
of loop quantu cosmology. We construct the solution space of this model by
using a new formulation derived by the path integral method.
The ‘probability’ of having the classical isotropic universe is estimated.

Kazuya Fujio
Astronomical Institute, Tohoku University 

Loop Quantum Cosmology
As is well known, the Universe is expanding now. 
Einstein’s general theory of relativity describes the dynamics of the Universe
very well. However,  general relativity breaks down at the very early universe.
Therefore we need the quantum theory of spacetime. 
Loop quantum cosmology (LQC) is one of the leading candidates for the quantum 
theory of the universe, which is based on loop quantum gravity (LQG).
LQC predicts the cosmic bounce to avoid the initial singularity.

The physical quantities (e.g. the energy density) diverge 
at the ‘beginning’ of the universe. It is called initial singularity.
GR cannot solve the initial singularity problem.

LQC replaces the initial singularity with the initial bounce.

−==
c

G
a
aH

ρ
ρρπ 1

3
82

2

Friedmann eq in LQC

Bianchi type I spacetime
The Bianchi type I spacetime is flat, homogeneous but anisotropic model.
In this model, the universe can expand or contract in three directions.
Of course, by the observation, we know that our Universe is very isotropic. 
Thus we need to answer the question “Why is our Universe so isotropic ?”

1a

2a

3a anisotropic expansion

anisotropic expansion

isotropic expansion

Σ+= ρπ
3

82 GH

Friedmann eq in classical Bianchi type I model

Note that the ‘isotropic’ means that three directions have same expansion rate.
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Definition of the anisotropy

Bianchi type I spacetime in LQC
The full equation of Bianchi type I spacetime in LQC is a difference equation.
Therefore  effective equations of motion are used to study the dynamics.
We derive the equations by using path integral method and construct 
a new formulation which is preferable to study the Bianchi type I model.

0),,(
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2
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l
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++++++=
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Hamiltonian constraint

{ } 2, −=Poissonbν

; The volume of the cell ; Constants which denotes anisotropy

p ; The momentum of the massless scalar field (constant of motion)

Behavior of solutions in LQC
As well as the isotropic model, the initial singularity is replaced with 
the initial bounce in our anisotropic model. 
Some solutions have very low anisotropy like our observed Universe. 
However, on the other hand, some solutions have very large anisotropy.
Therefore we should construct the set of all solutions to estimate the ‘probability’
to have the classical isotropic universes.

The solution with low anisotropy (case A) The solution with large anisotropy (case B)

time 

edge length of the cell

time 

edge length of the cell

Solution space Analysis
We regard the set of all initial data at the bounce as the solution space.
The solution space of our model is a two-dimensional space. 
We found the surprising fact that except the hexagon area at the center,
the universe shows cyclic behavior and never becomes sufficiently classical !

The solution space of our model.

time

volume

The ‘probability’ estimation
We define the ‘probability’ as the normalized area in the solution space 
where the desired condition is satisfied. We estimate the ‘probability’ for
the anisotropic parameter M<1. The result shows that the isotropic universes are
disfavored in LQC. However, if we consider more realistic model, LQC can explain
the present isotropy by giving the ‘actual’ upper limit for M.

ρπ
3

8 GM Σ=

The contours denote, from inside, M=0.1,0.5,1.0,1.5
Note that most of region satisfies M<100.
This is the ‘actual’ upper limit of M.

probability

The ‘probability’ for having M<
We cannot expect the appearance 
of the isotropic universes.
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Search for red K – [3.6] > 2 galaxies Search for red K – [3.6] > 2 galaxies S h f d K [ ] g
in the Spitzer SEDS survey field

[ ] g
in the Spitzer SEDS survey fieldi h S i SEDS fi ldp y

ABSTRACT 

 

3, Selecting significant sample 
  There are some possibilities of  false detection. As our selection is based on the 
catalogs, the difference of  source extraction is critical. Careful treatment is 
needed especially for blended sources, where the SEDS catalog identifies objects 
which suffer source confusion by PSF fitting method (Ashby et al. 2013). 
  We categorized objects by their blending (see the table below), and 

 

1, What’s the nature of K-[3.6]>2 galaxies? 
  Three kinds of  galaxies are expected to satisfy our K-[3.6] 
color criterion. 
(1)Passive red galaxies at z > 5 
: They should be most interesting galaxies. Relatively blue 
[3.6]-[4.5] colors suggest they are not too old or metal rich. 
(2) Dusty star-forming galaxies at low-z 
: It is difficult to distinguish passive  
  high-z galaxies from dusty low-z 
  galaxies. 
(3) Emission line galaxies  
                    at z ~ 4.5 or ~ 6 
: [OIII] and H lines of  z~6 star- 
  forming galaxies enter [3.6] and  
  [4.5], respectively. H lines of  z~ 
  4.5 galaxies also enter [3.6]. 

1, Data in the UDS field 
  We searched for objects that have K-[3.6] 
color redder than 2 in the 

  

2, K-[3.6] color 
  We used the SEDS and UKIDSS/UDS 
catalogs to measure K-[3.6], where the 
empirical aperture corrections are applied to 
estimate total magnitudes. 
  As a result, 

. Note that all of  them are redder 
than the 4 photometric error for bluer 
normal objects.  

⇒ 

2, Future analysis and observation 
  SED fitting 
 Optical spectroscopy will separate emission line galaxies as they 
should have Ly emission lines or Lyman breaks. 
 Comparison with the sky distribution of  LAEs at z=5.7 (Ouchi
+05), which shows the prominent density peak. 
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TEST OF SIGNIFICANT SIZE EVOLUTION
IN MASSIVE QUIESCENT GALAXIES

MOHAMMAD AKHLAGHI, TAKASHI ICHIKAWA

TOHOKU UNIVERSITY ASTRONOMICAL INSTITUTE

http://www.astr.tohoku.ac.jp/∼akhlaghi/

INTRODUCTION
Quiescent galaxies are generally red in

the current age of the universe (nearby ob-
jects). We associate this color with the
assumption that they don’t have young
stars and thus no large scale star formation.
These galaxies also tend to be very spheri-
cal and massive. One example can be seen
bellow compared to a spiral star forming
galaxy.

As we look farther away, the images
of the galaxies are not so clear. Take a
look at these four red galaxies for example,
the light from each departed, from left to
right: 7.46, 9.51, 11.26 and 11.69× 109 years
ago. Light from the top galaxy was emitted
3.14× 109 years ago.

If they have no star formation, then
how did they get so massive, concentrated
and large? This question has puzzled as-
tronomers for more than 50 years. All as-
pects of their evolution has been an obstacle
for any theory of galaxy evolution. Here we
will look at their size evolution. Astronomers
use the Sérsic profile to represent a galaxy’s
radial light profile:

Σ(r) = Σe exp

[

−b(n)

((
r

re

)1/n

− 1

)]

re is defined as the radius containing 1/e of
the total light. n shows the concentration
and is known as the Sérsic index. With a
similar total light and other observed quan-
tities (eccentricity and etc), these two pa-
rameters define the shape of a galaxy light
profile.

IN THE LITERATURE
Some authors (e.g. vanDokkum+2010)

claim there is a significant size evolu-
tion with re ∝ (1 + z)∼1.2 while oth-
ers (e.g. Saracco+2011) don’t observe such
size evolution. Proponents of merging (e.g.
vD+2010) associate it with merging and
others (e.g. Carollo+2013) to the growth of
their possible progenitors.

DIFFERENT PHILOSOPHY
Induction is commonly used by the,

generally positivist, astronomers. But here
we have used a new logical approach: Re-
duction to absurdity. Instead of placing pos-
itive faith in fitting results, we will assume
the results of the two contesting scenarios
on re and see how that affects another prop-
erty of the galaxies: the Sérsic index.

IMAGES & PSFS
In this study we used archival images from the GOODS-N region. For each redshift we

used the nearest broadband filter to the restframe V band in that redshift. The ACS Treasury
Survey (ATS) i band and z band images were used for 0.16 ≤ z < 0.55 and 0.55 ≤ z < 0.88
respectively. The MODS survey (Deep and Wide) J , H and K band images were used for
0.88 ≤ z < 1.5, 1.5 ≤ z < 2.43 and 2.43 ≤ z < 3.5.

The Point Spread Function (PSF) was fitted for stars separately for the Deep and Wide
images of MODS and the whole region for ATS. The final PSF can be seen as the thick black
lines of the images bellow.

FINDING THE SÉRSIC INDEX (n)
Having assumed re and knowing the total magnitude of the galaxy. We can simply find

n by creating mock profiles with various ns but similar total magnitude and similar re. We
measure the flux on all elliptical annuli up to the sky level. Thus a one dimensional profile
can be found for each galaxy. The flux value for each radius is divided by the flux of other
radii and the various flux ratios for each combination of radii are used compared to those of
the models to find the best n.

RESULTS

Median Sérsic index of Galaxies placed in bins of equal comoving volume. The purple line
shows evolution in n if we assume size evolution and the green line the evolution in n if no
size evolution has occurred.

Discussion: Assuming size evolution, results in a significant evolution in n, this suggests
a significant evolution in general morphological parameters to simultaneously occur and
not just in the size.

REFERENCES
Carollo+2013: arXiv:1302.5115. Saracco+2011: doi:10.1111/j.1365-2966.2010.18098.x.
vanDokkum+2010: doi 10.1088/0004-637X/709/2/1018.
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Elliptic Ding-Iohara Algebra and the Free Field Realization of
the Elliptic Macdonald Operator

Yosuke Saito
Mathematical Institute, Tohoku University, Sendai, Japan.

Notations. In this article, we use the following symbols.

The q-infinite product : (x; q)∞ : =
∏

n≥0

(1− xqn) (|q| < 1),

The theta function : Θp(x) := (p; p)∞(x; p)∞(px−1; p)∞,

The double infinite product : (x; q, p)∞ :=
∏

m,n≥0

(1− xqmpn),

The elliptic gamma function : Γq,p(x) := (qpx−1; q, p)∞
/
(x; q, p)∞.

The Ding-Iohara algebra is a quantum algebra arising from the free field realization
(FFR for short) of the Macdonald operator. Starting from the elliptic kernel function
as

Π(q, t, p)(x, y) :=
∏

i,j

Γq,p(xiyj)

Γq,p(txiyj)
(0.1)

introduced by Komori, Noumi and Shiraishi, we can define an elliptic analog of the
Ding-Iohara algebra. The free field realization of the elliptic Macdonald operator is
also constructed.

Elliptic Macdonald operator

HN (q, t, p)

FFR !−−−−−−−−→ Elliptic Ding-Iohara algebra

U(q, t, p)�
⏐
⏐⏐

elliptic

deformation

�
⏐
⏐⏐

elliptic

deformation !

Macdonald operator HN (q, t)
FFR−−−−−−−−→ Ding-Iohara algebra U(q, t)

1 Main Results

Definition 1.1 (Elliptic Ding-Iohara algebra U(q, t, p)). Let us define the struc-
ture function gp(x) by

gp(x) :=
Θp(qx)Θp(t

−1x)Θp(q
−1tx)

Θp(q−1x)Θp(tx)Θp(qt−1x)
.

Here we have used the notation above and assume |q| < 1, |p| < 1. We define the
elliptic Ding-Iohara algebra U(q, t, p) to be the associative C-algebra generated by
{x±

n (p)}n∈Z, {ψ±
n (p)}n∈Z and γ subject to the following relation : we set γ as the

central, invertible element and currents to be x±(p; z) :=
∑

n∈Z x±
n (p)z

−n, ψ±(p; z) :=∑
n∈Z ψ±

n (p)z
−n.

[ψ±(p; z), ψ±(p;w)] = 0, ψ+(p; z)ψ−(p;w) =
gp(γz/w)

gp(γ−1z/w)
ψ−(p;w)ψ+(p; z),

ψ±(p; z)x+(p;w) = gp

(
γ± 1

2
z

w

)
x+(p;w)ψ±(p; z),

ψ±(p; z)x−(p;w) = gp

(
γ∓ 1

2
z

w

)−1

x−(p;w)ψ±(p; z),

x±(p; z)x±(p;w) = gp

( z

w

)±1

x±(p;w)x±(p; z),

[x+(p; z), x−(p;w)]

=
Θp(q)Θp(t

−1)

(p; p)3∞Θp(qt−1)

{
δ
(
γ
w

z

)
ψ+(p; γ1/2w)− δ

(
γ−1w

z

)
ψ−(p; γ−1/2w)

}
,

where we set the delta function δ(z) :=
∑

n∈Z zn.

Theorem 1.2 (Free field realization of the elliptic Ding-Iohara algebra
U(q, t, p)). Let us define an algebra Ba,b of bosons : it is generated by {an}n∈Z\{0},
{bn}n∈Z\{0} with the following relations :

[am, an] = m(1− p|m|)
1− q|m|

1− t|m| δm+n,0, [bm, bn] = m
1− p|m|

(qt−1p)|m|
1− q|m|

1− t|m| δm+n,0,

[am, bn] = 0.

Define the boson Fock space F as the left Ba,b module generated by the vacuum vector
|0〉 which satisfies an|0〉 = bn|0〉 = 0 (n > 0) : F = span{a−λb−μ|0〉 : λ, μ ∈ P},
where P denotes the set of partitions and a−λ := a−λ1 · · · a−λ�(λ)

(λ ∈ P). Set

γ := (qt−1)−1/2 and define operators η(p; z), ξ(p; z), ϕ±(p; z) : F → F ⊗ C[[z, z−1]]
as follows :

η(p; z) :=: exp

(
−
∑

n�=0

1− t−n

1− p|n|
p|n|bn

zn

n

)
exp

(
−
∑

n �=0

1− tn

1− p|n|
an

z−n

n

)
:,

ξ(p; z) :=: exp

(∑

n�=0

1− t−n

1− p|n|
γ−|n|p|n|bn

zn

n

)
exp

(∑

n�=0

1− tn

1− p|n|
γ|n|an

z−n

n

)
:,

ϕ+(p; z) :=: η(p; γ1/2z)ξ(p; γ−1/2z) :, ϕ−(p; z) :=: η(p; γ−1/2z)ξ(p; γ1/2z) : .

Then the map defined by

x+(p; z) �→ η(p; z), x−(p; z) �→ ξ(p; z), ψ±(p; z) �→ ϕ±(p; z)

gives a representation of the elliptic Ding-Iohara algebra U(q, t, p).

Theorem 1.3 (Free field realization of the elliptic Macdonald operator).
The elliptic Macdonald operator HN (q, t, p) (N ∈ Z>0) is defined by

HN (q, t, p) :=

N∑

i=1

∏

j �=i

Θp(txi/xj)

Θp(xi/xj)
Tq,xi (Tq,xf(x) := f(qx)). (1.1)

Let φ(p; z) : F → F ⊗C[[z, z−1]] be an operator defined as

φ(p; z) := exp

(∑

n>0

(1− tn)(qt−1p)n

(1− qn)(1− pn)
b−n

z−n

n

)
exp

(∑

n>0

1− tn

(1− qn)(1− pn)
a−n

zn

n

)
.

Then the operators η(p; z), ξ(p; z) reproduce the elliptic Macdonald operator as follows.

[η(p; z)− t−N (η(p; z))−(η(p; p−1z))+]1

N∏

j=1

φ(p;xj)|0〉

=
t−N+1Θp(t

−1)

(p; p)3∞
HN (q, t, p)

N∏

j=1

φ(p;xj)|0〉, (1.2)

[ξ(p; z)− tN (ξ(p; z))−(ξ(p; p−1z))+]1

N∏

j=1

φ(p;xj)|0〉

=
tN−1Θp(t)

(p; p)3∞
HN (q−1, t−1, p)

N∏

j=1

φ(p;xj)|0〉, (1.3)

where (η(p; z))± stands for the plus and minus parts of η(p; z) respectively as

(η(p; z))± = exp

(
−
∑

±n>0

1− t−n

1− p|n|
p|n|bn

zn

n

)
exp

(
−
∑

±n>0

1− tn

1− p|n|
an

z−n

n

)

and (ξ(p; z))± is defined in the similar way. The symbol [f(z)]1 denotes the constant
term of f(z) in z.

Another forms of the theorem 1.3

Let us introduce the zero mode generators a0, Q satisfying the following :

[a0, Q] =
1

β
, [an, a0] = [bn, a0] = 0, [an, Q] = [bn, Q] = 0 (n ∈ Z \ {0}).

Here the parameter β ∈ C is defined by the condition t = qβ . For a complex number
α, we define |α〉 := eαQ|0〉. Then we have βa0|α〉 = α|α〉.

By using the zero modes, we can reformulate the free field realization of the elliptic
Macdonald operator as follows.

Theorem 1.4. Set operators η̃(p; z), ξ̃(p; z) as η̃(p; z) := (η(p; z))−(η(p; p−1z))+,

ξ̃(p; z) := (ξ(p; z))−(ξ(p; p−1z))+. We define operators E(p; z), F (p; z) as follows :

E(p; z) := η(p; z)− η̃(p; z)q−βa0 , F (p; z) := ξ(p; z)− ξ̃(p; z)qβa0 . (1.4)

Then the elliptic Macdonald operators HN (q, t, p), HN (q−1, t−1, p) are reproduced
from the operators E(p; z), F (p; z) as follows :

[E(p; z)]1

N∏

j=1

φ(p;xj)|Nβ〉 = t−N+1Θp(t
−1)

(p; p)3∞
HN (q, t, p)

N∏

j=1

φ(p;xj)|Nβ〉, (1.5)

[F (p; z)]1

N∏

j=1

φ(p;xj)|Nβ〉 = tN−1Θp(t)

(p; p)3∞
HN (q−1, t−1, p)

N∏

j=1

φ(p;xj)|Nβ〉. (1.6)

2 Related topics

The author is interested in the following materials :

• Relation to the elliptic Feigin-Odesskii algebra, commutative family of the elliptic
Macdonald operator.

• An elliptic analog of the q-Virasoro algebra.

• Vertex operator representations of the BC type elliptic q-hypergeometric integrals
and superconformal indices.

• Partition functions of six dimensional theories, an elliptic analog of the Nekrasov
partition function.
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Local existence and blow-up criterion for the compressible

Navier-Stokes-Yukawa equations in Besov spaces

Noboru Chikami (sb0m23@math.tohoku.ac.jp)
Mathematical Institute, Tohoku University

The 5th GCOE International Symposium “Weaving Science Web beyond Particle-Matter Hierarchy”

1 Introduction

We study the compressible Navier-Stokes-Yukawa system:

(NSY)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0, (t, x) ∈ R
+ × R

N ,

∂t(ρu) + div(ρu ⊗ u) + ∇P (ρ)

= μΔu + (μ + λ)∇div u+ρ∇ψ, (t, x) ∈ R
+ × R

N ,

−Δψ + ψ = ρ − ρ̄, (t, x) ∈ R
+ × R

N ,

u(0, x) = u0, ρ(0, x) = ρ0, x ∈ R
N ,

where N ≥ 2, describing the motion of a nuclear matter.

ρ(t, x) : R
+ × R

N → R : density

u(t, x) : R
+ × R

N → R
N : velocity

ψ(t, x) : R
+ × R

N → R : Yukawa potential

P (ρ) = ρα, α ≥ 1 : pressure

μ，λ : Lamé constant, μ > 0，λ + μ > 0

ρ̄ > 0 : a physical constant

Under assumptions that the density ρ is bounded away from 0 and
tends to some positive constant at infinity, the specific volume a =

a(t, x) is well-defined by a := ρ−1 − 1. Solving the self-consistent third

equation for ψ, then the equations for (a, u) is writen as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ta + u · ∇a = (1 + a)divu,

∂tu + u · ∇u − (1 + a)Lu + ∇(Q(a)) = −∇(Id − Δ)−1 a

1 + a
+ f,

u(0, x) = u0, a(0, x) = a0.

Here, we denote L = μΔ + (λ + μ)∇div

and Q(a) := −
∫ t

0

P ′((1 + z)−1)

(1 + z)2
dz.

2 Critical argument

The compressible barotropic Navier-Stokes system (CNS in short

hereafter), which is simply (NSY) without the potential term, has the

following scaling property:{
ρν(t, x) := ρ(ν2t, νx)

uν(t, x) := νu(ν2t, νx),
ν > 0.

provided the pressure term has been changed accordingly.

Definition 1 (Critical space of (NSY)).

a ∈ L∞(0, T ; B
N
p

p,1), u ∈ L∞(0, T ; B
N
p
−1

p,1 ).

Let {Φ, φj}j≥1 be inhomogeneous Littlewood-Paley decomposition.

Definition 2. s ∈ R, 1 ≤ p ≤ ∞, 1 ≤ σ < ∞.

Bs
p,σ(RN) := {u ∈ S ′; ‖u‖Bs

p,σ
< ∞}

‖u‖Bs
p,σ

:= ‖Φ ∗ u‖Lp + (
∑
j≥1

2jsσ‖φj ∗ u‖σ
Lp)

1
σ , 1 ≤ σ < ∞

3 Known results
(CNS) N ≥ 2, critical Besov space Ḃ

N
2

2,1 × Ḃ
N
2
−1

2,1 ,

unique local sol., R. Danchin, 2007,

N ≥ 2, critical inhomogeneous Besov space B
N
p

p,1 × B
N
p
−1

p,1 ,

unique local sol., B. Haspot, 2010.

(NSY) The derivation of the hydrodynamical model,

B. Ducomet, 2001.

4 Results

Theorem 1. Let N ≥ 2, 1 < p < 2N , and the pressure term P be given

by a suitably smooth function of the specific volume a. Assume that the

initial data satisfy a0 ∈ B
N
p

p,1, u0 ∈ B
N
p
−1

p,1 and f ∈ L1
loc

(
R

+; B
N
p
−1

p,1

)
with

1 + a0 ≥ a > 0.

(1) Then, there exists a positive time T > 0 such that system (1) has

a solution (ρ, u, ψ) satisfying

(a, u, ψ) ∈ C([0, T ); B
N
p

p,1) ×
(

L1(0, T ; B
N
p

+1

p,1 ) ∩ C([0, T ); B
N
p
−1

p,1 )

)N

× C([0, T ); B
N
p

+2

p,1 ).

Furthermore there exists some constant C(a) > 0 depending only

on a such that for all (t, x) ∈ [0, T ) × R
N , 1 + a(t, x) > C(a).

(2) Moreover if p satisfies

1 < p ≤ N when N ≥ 3

or p = 2 when N = 2,

the solution (a, u, ψ) is unique.

Remark 1. The function space

(ρ − ρ̄, u) ∈ C([0, T ); B
N
p

p,1) ×
(

L1(0, T ; B
N
p

+1

p,1 ) ∩ C([0, T ); B
N
p
−1

p,1 )

)N

is scale-critical if one only looks at the high frequency part of the

functions. In other words, we need stronger assumptions on the low

frequency of the solution to control the potential term .

Theorem 2. Let 1 < p < N . If the solution of (1)

(a, u, ψ) ∈ C([0, T ); B
N
p

p,1 × (B
N
p
−1

p,1 )N × B
N
p

+2

p,1 )

satisfies

(i) a ∈ L∞(0, T ; B
N
p

p,1), 1 + a ≥ ∃a > 0,

(ii) either

(1) u ∈ L
2

1−α (0, T ; Ḃ−α
∞,∞) (−1 < α < 1) or

(2) ‖∇u‖Ḃ0∞,∞
log(e + ‖∇u‖Ḃ0∞,∞

) ∈ L1(0, T ),

then (a, u, ψ) may be continued beyond T .

Remark 2. The condition (3) corresponds to the Beale-Kato-Majda

blow-up criterion for the Euler equations.

5 Key estimate

(LPV)

{
∂tu − (1 + a)Lu = −u · ∇u + h,

u(0, x) = u0(x).

Proposition 3. N ≥ 2, 1 < p < ∞, N
p

≥ s > 0. Let a ∈
˜

L∞(0, T ; B
N
p

p,1) with 1+a ≥ b, and u be the solution of (LPV). ⇒∃ some

constant C∗ (depending on N , s, p, μ, λ, T , ‖u0‖Bs
p,1

, ‖h‖L1(0,T ;Bs
p,1)

and ‖u‖
L

2
1−α (0,T ;Ḃ−α∞,∞)

(|α| < 1) or∫ T

0

‖∇u‖Ḃ0∞,∞
log(e + ‖∇u‖Ḃ0∞,∞

)dt ) such that we have for all t ∈
[0, T ],

‖u‖
˜L∞

t (Bs
p,1)

≤ C∗.
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1.����� �����

1. syntax

Var := the set of propositional variables

symbols: {∨,¬,�}∪ Var
formula: p (p ∈ Var) :: A ∨ B :: ¬A :: �A

2. semantics

assignment : function form Var to {T, F}
Kripke frame (M,R) : M is a set of assignments, R is a

binary relation on M
Let (M,R) be a Kripke frame, s ∈ M, A be a formula.

We define a relation s |= A (A is true in s) as usual.

In case of �A,

s |= �A iff ∀s′ ∈ M((s, s′) ∈ R→ s′ |= A)

Intuitive meaning of Kripke frame� �
M : a set of worlds

R: accessibility relation

s |= �A: A is true in all futures of the world s
� �

A is valid in (M,R) iff ∀s ∈ M (s |= A)

A is valid iff ∀(M,R) (A is valid in (M,R))

Completeness theorem for modal logic(Kripke1959)

For every formula A,

A is valid⇔ A is provable.

A logic has finite model property iff

[A is valid⇔ A is valid in some finite Kripke frame.]

As a corollary of the completeness theorem, we can prove

finite model property for modal logic.

Theorem� �
Modal logic has finite model property.

� �

2. 	
���
������� ����� ���������� �����

1.dependence

Let (M,R) be a Kripke frame, X ⊂ M and p, q ∈ Var.

we define a new formula dep(p, q) as follows.

X |= dep(p, q) ⇔ ∀s, s′ ∈ X(s(p) = s′(p)→ s(q) = s′(q))

(the truth value of q is depend on that of q w.r.t. X)

2. syntax

(1) Modal dependence logic (MDL)

symbols: {∨,¬,�} ∪ Var ∪ {depn : n ∈ ω}
formula: modal formulas :: depn(p0, ..., pn−1, pn)

(2) Generalized modal dependence logic (GMDL)

symbols: {symbols of MDL} ∪ {
,∼}
formula:MDL-formulas:depn(A0, ..., An−1, An):A
B:∼ A

3. semantics

Let (M,R) be a Kripke frame and X ⊂ M.

X |= p ⇔ ∀s ∈ X(s(p) = T )

X |= ¬p ⇔ ∀s ∈ X(s(p) = F)

X |= A ∨ B ⇔ ∃Y,Z(X = Y ∪ Z ∧ Y |= A ∧ Z |= B)

X |= ¬(A ∨ B) ⇔ X |= ¬A ∧ X |= ¬B
X |= ¬¬A ⇔ X |= A
X |= �A ⇔ R[X] |= A
(R[X] := {s′ ∈ M : ∃s ∈ X((s, s′) ∈ R)})
X |= ¬�A ⇔ ∃Y(∀x ∈ X∃y ∈ Y((x, y) ∈ R) ∧ Y |= ¬A)

X |= depn(A0, ..., An−1, An) ⇔
[∀s, s′ ∈ X({s} |= Ai ⇔ {s′} |= Ai (∀i < n)]

⇒ ({s} |= An ⇔ {s′} |= An)

X |= A 
 B ⇔ X |= A ∨ X |= B
X |=∼ A ⇔ X �|= A

4.validity

A is true in (M,R,X) iff X |= A
A is valid in (M,R) iff ∀X ⊂ M(A is true in (M,R, X))

A is valid iff ∀(M,R) (A is valid in (M,R))

Theorem� �
GMDL has finite model property.

� �

3. ���� �
������

Open problem 1� �
Are there any good proof systems to prove complete-

ness theorem for MDL (also for GMDL)?

� �
In 2009, Sevenster proved that satisfiability problem of

MDL is NEXPTIME-complete.

Open problem 2� �
What is the comutational complexity of satisfiablity

for GMDL?
� �

Open problem 3� �
What is the computational complexity of validity for

MDL (GMDL)?

� �
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Asymptotic error distributions of the Crank-Nicholson scheme
for SDEs driven by fractional Brownian motion

Nobuaki Naganuma
Mathematical Institute, Tohoku University

1 Introduction

We consider the following 1-dim SDE:
{
dXt = σ(Xt) d

◦Bt , t ∈ (0, 1],

X0 = x0,

where B is a 1-dim. fBm on (Ω ,F ,P) with the Hurst parameter
0 < H < 1. The solution is expressed by Xt = φ(x0,Bt).

Remark 1. FBm B is a conti. centered Gaussian proc. with

E [BsBt ] =
1

2
(s2H + t2H − |s − t|2H)

for some 0 < H < 1. Note that

• B is a Bm if H = 1/2, else B is NOT a semimartingale.

• B is (H − ε)-Hölder continuous.

The Crank-Nicholson scheme {X̂ (m)}∞m=1 is defined by the so-
lution to the equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X̂
(m)
0 = x0

X̂
(m)
t = X̂

(m)
k2−m +

1

2

(
σ
(
X̂

(m)
t

)
+ σ

(
X̂

(m)
k2−m

))
(Bt − Bk2−m) ,

t ∈ (k2−m, (k + 1)2−m].

2 Main theorem

Assumption 2. Assume 1/3 < H < 1/2 and

σ ∈ C∞
bdd(R;R), sup |σ′| > 0, inf |σ| > 0.

Theorem 3 (N). Under Assumption 2, we have

lim
m→∞

(
B , 2m(3H−1/2)(X̂ (m) − X )

)

=

(
B , σ(X·) · c3,H

∫ ·

0

f3(Xs) dWs

)

weakly in D([0, 1];R2), where c3,H > 0, f3 = (σ2)′′/24, and W is
a standard Brownian motion independent of B .

3 Proof

We have 5 steps in order to prove the main theorem.

3.1 Analysis of the Hermite variations

Let q ≥ 2 and f ∈ C 2q
poly(R;R). Put

G (m)
q (t) = 2−m/2

�2mt�−1∑

k=0

f (B(k+1)2−m) + f (Bk2−m)

2

× Hq(2
mH�Bk2−m),

where Hq denotes the q-th Hermite polynomial.

Proposition 4 (N). If 1/2q < H < 1− 1/2q, then we have

lim
m→∞

(
B ,G (m)

q

)
=

(
B , cq,H

∫ ·

0

f (Bs) dWs

)

weakly in weakly in D([0, 1];R2).

3.2 Expression of the Crank-Nicholson sheme

Proposition 5 ([1]). Under Assumption 2, X̂ (m) satisfies

X̂
(m)
k2−m = φ

(
x0,Bk2−m + U

(m)
k2−m

)

= Xk2−m + σ(Xk2−m)U
(m)
k2−m + O((U

(m)
k2−m)

2),

where U (m) is defined by U
(m)
0 = 0 and

U
(m)
(k+1)2−m = U

(m)
k2−m + f3

(
X̂

(m)
k2−m

)
(�Bk2−m)3

+ f4
(
X̂

(m)
k2−m

)
(�Bk2−m)4 + O

(
(�Bk2−m)5

)

where f3 = (σ2)′′/24 and f4 = σ(σ2)′′′/48.

3.3 Decomposition into the main term and the
remainders

Proposition 6 (N). Under Assumption 2, we have the expan-
sion, for every α ≥ 1,

U (m) =
α∑

β=1

Φ(m,β) + O(2m(α+1)(�B)3(α+1)),

where Φ(m,1) is definde by Φ
(m,1)
0 = 0 and

Φ
(m,1)
(k+1)2−m = Φ

(m,1)
k2−m + f3 (Xk2−m) (�Bk2−m)3

+ f4 (Xk2−m) (�Bk2−m)4 ,

and, for β ≥ 2, Φ(m,β) is also defined explicitly.

3.4 Convergence of the main term

Proposition 7 (N). Under Assumption 2, we have

lim
m→∞

(B , 2m(3H−1/2)Φ(m,1)) =

(
B , c3,H

∫ ·

0

h(Bs) dWs

)

weakly in D([0, 1];R2).

Proof. Put h(η) = f3(φ(x0, η)). Then we have

2m(3H−1/2)Φ(m,1)

= 2−m/2

�2m·�−1∑

k=0

(
h(Bk2−m) +

1

2
h′(Bk2−m)

)
(2mH�Bk2−m)3

Using the Taylor formula, ξ3 = H3(ξ)+ 3ξ and Proposition 4, we
have the assertion.

3.5 Convergence of the remainders

By long calculation, we have Φ(m,β) → 0 for β ≥ 2.

References

[1] I. Nourdin. A simple theory for the study of SDEs driven
by a fractional Brownian motion, in dimension one. In
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Homothetic Solution to
Curve Shortening Flow 

Abdullah Kizilay
Mathematical Institute, Tohoku University

sa9m39@math.tohoku.ac.jp

Preliminaries

As a background of studying geometric flows, the simplest one is the curve shortening 
flow, given by one-parameter family of closed curves in the plane (  is time and   is curve 
parameter),           

γt(0) = γt(1),  such that                          

Let     be unit normal vector, and    is the curvature, then the evolution law
is called the curve shortening flow(CSF).

N κ
dγt(σ)

dt
= κN

κN

κN

γ0(σ)

γt(σ)

∂γ

∂t
= hT + kNhT

where               is the curve parameter, and                is the time parameter,     is the unit 
normal vector and    is the curvature.

σ ∈ R/Z t ∈ [0, T )

Geometry of Normalized Curve Shortening Flow

In terms of new time parameter   satisfying             , we define the Normalized flow:              τ
dt

dτ
= α2

∂γ

∂τ
= α2(hT + kN)

Frenet equations take the following form:   

    (speed of the curve) evolves:

∂α

∂τ
= −α3

∫ 1

0

k2dσ

evolution equation for the curvature          ;

∂k

∂τ
=

∂2k

∂σ2
+ αh

∂k

∂σ
+ α2k3 + α2kR∣∣

γ

α(τ)

k(σ, τ)

Moreover, derivative with respect to    and    are related by  ts

where    is the curvature operator on     . R M

Reformulation 

(  )Using        equations, we obtain    κ = λe−
∫
β

rewriting     as;                 with  κ κ = λeP/2 β = −1

2
P ′

substituting in      , we obtain   (  )

κ(σ, τ) = α(τ)k(σ, τ)

β(σ, τ) = α(τ)h(σ, τ)

Proposition-2
A constant speed parametrized closed curve                        represents a homothetic solu-
tion of CSF if and only if its normalized curvature function   (where                          ) 
obeys;

γ : R/Z → E
2

κ

∂κ

∂σ
= κ′ = −βκ

∂β

∂σ
= β′ = κ2 − λ2and

where            is an auxiliary function satisfies                                , and                .    β(σ, τ) 0 < λ ∈ R

(  )

P ′′ + 2λ2(eP − 1) = 0

P = 2log
(κ
λ

)}

Homothetic solution & main result 

Theorem (Abresch - Langer)

Let                     be a unit speed closed curve representing a homothetic solution of the 
curve shortening flow, then    is an m-covered circle or    is a member of family of tran-
scendental curves            having the following description: if    ,     are positive integers 
satisfying                              , there is a unique unit speed curve                          a 
solution to the equations

γ : R/Z → E
2

γ γ

{γm,n} m n

1/2 < m/n <
√
2/2 γm,n : R/Z → E

2

P = 2log
(κ
λ

)
P ′′ + 2λ2(eP − 1) = 0 ,                                    for some constant    .  λ

γt(σ) : [0, T )× [0, 1] → R
2

t σ

Background of study
 Following two results characterize the curve shortening flow(CSF) for embedded, closed 
initial curves:
       M. Gage and R. Hamilton [1]: Let          be a closed, convex curve, then the evolution 
law preserves convexity and shrinks to a point in a finite time. 
     M. Grayson [2] showed that any closed, embedded curves become convex before it 
shrinks to a point 

γ0(σ)

According to Abresch and Langer’s [3] study, we present curve shortening flow for plane 
curves which are not necessarily embedded, and these curves evolve by homothety.

In [3], the curve shortening flow is modified by adding tangential field       to       in the 
evolution law, with this modification; flow is geometrically unchanged but this helps us to 
maintain the constant speed  

hT kN

γt(σ) : [0, T )× R/Z → MLet     be 2-manifold and let                                       be an evolving curve according to                                         M

N

k

κN
hT

T

N

γ0(σ) γt(σ)

hT + kN

hT + kN

hT + kN

hT + kN

       Following Proposition shows that the modified CSF has constant speed                    
along each curves     . 

α =
∣
∣∣
∂γt
∂σ

∣∣
∣

γt

Proposition-1
 Let      be 2-manifold,        and evolves according to                            , then       
has constant speed if and only if          has constant speed and    satisfies  

∂γ/∂t = hT + kN

γ0(σ)

γt(σ) γt(σ)

h

h′

α
= k2 −

∫ 1

0

k2dσ

M

.

The quantities of interest for us are speed of the curve         and evolution equation for 
the curvature           . 

α(τ)

k(σ, τ)

Contracting a homothetic solution of normalized CSF is a flow in which the shapes of the 
curves change homothetically and continuously to a point in finite time, which is called 
also contracting self-similar curve (the circle is a contracting self-similar curve). Moreo-
ver, other such curves must have self-intersections. In fact, all closed homothetically 
evolving curves classified by Abresch and Langer and it is represented in the following: 

References:
[1] M. Gage and R. Hamilton, The heat equation shrinking of convex plane curves, J. Differential Geometry 23 (1986) 69-96.
[2] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285–314.
[3] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geometry 23 (1986) 175-196.

Aim

Modification of usual curve shortening flow

}
∂T

∂s
= kN

∂N

∂s
= −kT

swhere   is arc-lenght parameter which implies 
∂

∂s
=

1

α

∂

∂σ

∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
−
(h′

α
− k2

) ∂

∂s
+R

(
T,

∂γ

∂t

)
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Homogeneous Reinhardt domains containing the origin in the comlex
3-space

Kouichi Kimura

Mathematical Institute,Tohoku University

Algebraic isomorphisms
An analytic automorphism (zi) �−→ (wi) of (C∗)n is called

an algebraic automorphism, if whose components are given
by Laurent monomials, that is, of the form

wi = αi zi
ai1 · · · zn

ain (1 ≤ i ≤ n)

where (aij) ∈ GL(n, Z) and (αi) ∈ (C∗)n.

Suppose D1 and D2 are domains in C
n and an analytic

isomorphism ϕ : D1 �−→ D2 is induced by an algebraic au-
tomorphism. Then the isomorphism ϕ is said to be an al-
gebraic isomorphism, and two domains D1, D2 are called

algebraically equivalent. This fact is denoted by D1

alg∼= D2.

Bounded Reihardt domains
A domain D in C

n is called a Reinhardt domain, if it
is stable under rtations around the coodinate axis. And
D is called homogeneous, if it admits a transitive action
of Aut(D) which is holomorphic automophism groups on
D. We interested in the classification of homogeneous Rein-
hardt domains by algebraic equivalence relation. When D is
bounded, by the well-known H.Cartan theorem, Aut(D) has
the structere of a Lie group with respect to compact-open
topology. By means of this fact, following result is shown.

Therem 1. Let D be a bounded Reinhardt domain in
C

n. If D is homogeneous, then D
alg∼= Bn1 × · · · ×Bnk

where
Bni

denotes the unit ball in C
ni .

Homogeneous Reinhardt domains
Unfortunately it is difficult to generalize Theorem 1 in

unbounded Reinhardt domains, because in such a case we
cannot use the classical Cartan theorem. But the classifica-
tion is conjectured to be as follows :

Conjecture For a homogeneous Reinhardt domain D in
C

n, there exist integers n1, · · · , nk but k may be 0, and
non-negative integers l,m with n1 + · · · + nk + l + m = n

such that D
alg∼= Bn1 × · · · × Bnk

× C
l × (C∗)m.

Wen D is unbounded, this conjecture is still open. The
next result in my master’s thesis is a partial answer in the
unbounded case.

Theorem 2. Let D be a pseudoconvex Reinhardt domain
in (C∗)n. If D is homogeneous, then D is coinside with
(C∗)n.

It is expected that homogeneity implies pseudoconvexity
in Reinhardt domains. But it is not proved at this moment.

Current study
Now We reseach on the conjecture under the opposite con-

dition of Theorem 2, that is, D contains the origin. In ad-
dition, for the sake of simplicity, let the space dimension be
3. Then we proved the following:

Theorem 3. Let D be a unbounded proper Reinhardt
domain containing the origin in C

3. If D is homogeneous
, then D is algebraic equivalent to one of three canonical
domains so that B1 × C

2, B1 × B1 × C, B2 × C.

The notion of Liouville foliation, which was introduced by
Shimizu in order to analize unbounded Reinhardt domains,
play a key role for the proof of Theorem 3.

Definition Let M be a complex manifold. Let f1, · · · .fm

be bounded holomorphic functions on M , and g1, · · · , gn be
bounded plurisubharmonic (psh.) functions on M . Then a
mapping ϕm,n = (f1, · · · .fm, g1, · · · , gn) is called a Liouville
mapping on M .

A collection {Σα}α∈A of subsets of M is called a Liouville
foliation on M if the following conditions are satisfied :

(L1) If α1 �= α2 , then Σα1 ∩ Σα2 = φ ;

(L2) ∪
α∈A

Σα = M ;

(L3) For each Σα, any bounded psh. function on M takes
a constant value on Σα ;

(L4) For every α1, α2 ∈ A with α1 �= α2, there exists a pair
of integers (m,n) and a Liouville mapping ϕm,n on M

such that the constant values of ϕm,n on Σα1 and Σα2

are different.

The important thing is that following:
First, any complex manifold has at most one structure of

Liouville foliation, which may contain singular leaves, and it
is invariant under holomorphic isomorphisms.

Secondaly, In most cases, we classified Liouville forliations
that are defined on unbounded proper Reinhardt domains
containing the origin in C

3.
Theorem 3 follows from the two facts mentioned above.
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On some results for covering systems of congruences
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1 Definition

Definition 1. A system of congruences

ai0 +
k∑

j=1

aijxj ≡ 0(modmi) (1 ≤ i ≤ n) (1)

is called covering system if every x = [x1, ..., xk] ∈ Z
k satisfies one of

the congruences of the system. Such a system is called regular if it has

no proper subsystem which is a covering system.

Definition 2. The set of integers M = {m1, ...,mn} is good if there

exist aij’s ∈ Z such that {ai0 +
∑k

j=1 aijxj ≡ 0(modmi)} is covering

system. We say that mi is helpful in M if M\{mi} is bad but M is

good.

2 General covering system

Here are principal result concerning covering systems for Z
k.

Theorem 3. (Novak, Znam, Crittenden)

1. M is good ⇒ ∑n
i=1 1/mi ≥ 1.

2. the r-th congruence is essential and mr =
∏s

τ=1 p
ατ
τ

⇒ n ≥ 1 +
∑s

τ=1 αi(pτ − 1).

3. If a system of the form (1) covers a k-dim cube Ck ⊂ Z
k with the

side length 2n, then it’s a covering one.

For the homogeneous covering system (i.e. ai0 = 0 for all i), we shall

obtain the stronger form and analogue of Thm3.

Theorem 4. (Analogues for homogeneous covering systems)

　 For a given prime q dividing
∏n

i=1 mi and a given γ > 0,

let nγ := #{i; qγ || mi}, α = minnγ �=0 γ, β = maxnγ �=0 γ.

1.
∑β

η=α nη/q
η ≥ 1.

2. the r-th congruence is essential ⇒ n ≥ 1+
∑s

τ=1{ατ (pτ − 1)+1}.

3. (n ≥ 2) If a homogeneous system covers Ck ⊂ Z
k with the side

length 2n−1 and 0 = [0, ..., 0] ∈ Ck, then it’s a covering one.

(n ≥ 5) If a homogeneous system covers Ck ⊂ Z
k with the side

length 2n−1, then it’s a covering one.

Remark 5. The following example shows that 2n−1 cannnot be re-

placed by 2n−1 − 1 in Thm4:

y ≡ 0 (mod2),

x+ 2iy ≡ 0(mod2i+1), 0 ≤ i ≤ n− 2.

Moreover, for n ≤ 4 the assertion of Thm4 doesnot hold. The following

systems cover the segment < 2 >, < 2, 4 >, < 2, 6 >, < 2, 10 > of the

length:1, 3, 5, 9, respectively.

x ≡ 0(mod2);

x ≡ 0(mod2), 0(mod3);

x ≡ 0(mod2), 0(mod3), 0(mod5);

x ≡ 0(mod2), 0(mod3), 0(mod5), 0(mod7);

(Actually, using the estimate for the Jacobsthal function, we could

replace 2n−1 by 2, 4, 6 or 10 for n = 1, 2, 3, 4, respectively.)

3 An algorithm for testing a set of inte-

gers for goodness

We consider the following decision problem for k = 1. For answering

this problem, we construct an algorithm for testing for goodness.

Covering system

Instance :A multiset of integers {m1, ...,mn}.
Question :Do there exist integers a1, ..., an such that

{x ≡ a1(modm1), ..., x ≡ an(modmn)}
is a covering system?

Algorithm Moduli

input M := {m(1), ...,m(n)};
If 1/m(1) + ...+ 1/m(n) < 1 then output ”No”, stop;

compute L := lcm{m(1), ...,m(n)};
compute prime factorization of L := p(1)^a(1) ∗ ... ∗ p(s)^a(s);
if s == 1 then output ”Don’t know”, stop;

for i = 1 to s

　 sum := 0;

for j = a(i) to 1 step -1

　　 compute sum := sum + p(i)^(a(i) − j)|{m ∈ M : p(i)^j |
m, p(i)^(j + 1) � m}
　　 if sum < p(i)^(a− j+1) then call Moduli(M\{m ∈ M : p(i)^j |
m}), stop;
　 end;

end;

for i := 1 to s;

　M0 := {m ∈ M : p(i) � m}
　M1 := {m ∈ M : p(i) | m}
　Good Partition Found := false;

　 for each p(i)-partition M1: D(1) ∪ ... ∪D(p(i)) of M1

　　 if Moduli(M0 ∪ {d/p(i) : d ∈ D(k)}) ==”Don’t know” for all

k ∈ {1, ..., p(i)}
　　　 then Good Partition Found := true;

　　 end;

　 if Good Partition Found == false then output ”No”, stop;

　 end;

　 output ”Don’t know”;

end;

The correctness of the algorithm follows from Thm3 and the follow-

ing theorem.

Theorem 6. Write M = M0 ∪ M1 where the members of M1 are

divisible by p and those of M0 are not. If M is good, then there exists

a partition of M1 = D1 ∪ ... ∪ Dp such that M0 ∪ {d/p : d ∈ Di} is

good for each choice of i ∈ {1, ...p}.
Unfortunately this algorithm cannot give a positive answer: its out-

put is either ”No” or ”Don’t know”. But considering the sets which

returned ”Don’t know” as output, we could show that no regular and

composite covering systems exist with fewer that 20 moduli.
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Perturbation of Dirichlet forms and stability of fundamental solutions
Masaki Wada ∗

March 4, 2013

1 Notions and Notations

The jump type Markov process on R
d describes the random

motion of particle in the state space R
d . We can character-

ize this by means of Dirichlet form E as follows:

E (u,v) =
∫∫

Rd×Rd
(u(y)−u(x))(v(y)− v(x))J(x,y)dxdy.

Here J(x,y) is a symmetric function and describes the fre-
quency of jump from x to y. In particular, if J(x,y) �
1/|x− y|d+α holds for some 0 < α < 2, we call the associ-
ated Markov process α-stable-like. If J(x,y) � exp(−m|x−
y|)/|x− y|d+α holds for some 0 < α < 2 and m > 0, we call
the associated Markov process relativistic α-stable-like. In
the sequel, we deal with these two kinds of jump Markov
process.

2 Preceding Results

The transition density function p(t,x,y) is one of the impor-
tant notions in order to analyze Markov processes. This is
the probability with which the particle in x at time 0 exists
in y at time t. Moreover it is known that p(t,x,y) coincides
with the fundamental solution of ∂u/∂ t = L u, where L is
a non-local operator satisfying

E (u,v) =−
∫

Rd
L u(x)v(x)dx.

Z. Q. Chen, P. Kim and T. Kumagai showed that p(t,x,y)
admits the two-sided estimates as follows:

C1φ(C2t,C3|x− y|)≤ p(t,x,y)≤C4φ(C5t,C6|x− y|),

where φ is an appropriate function and Ci’s are positive con-
stants [1, 2].

3 Problem in Consideration

In the sequel we assume that the Markov process is tran-
sient, namely it holds that

G(x,y) :=
∫ ∞

0
p(t,x,y)< ∞.

First we define some classes of small measure μ .

Definition 1. (i) A measure μ is said to be in Kato class
if it holds that

lim
a→0

sup
x∈Rd

∫

|x−y|≤a
G(x,y)μ(dy) = 0 (1)

∗Mathematical Institute, Tohoku University. Mail:
sb1d14@math.tohoku.ac.jp

(ii) A Kato class measure μ is said to be Green tight if it
holds that

lim
r→∞

sup
x∈Rd

∫

|y|>r
G(x,y)μ(dy) = 0. (2)

Here we consider the perturbation of Dirichlet form E by
Green tight measure μ as follows:

E μ(u,u) = E (u,u)−
∫

Rd
u2dμ. (3)

It is known that E μ (or corresponding operator L μ := L +
μ) also admits the fundamental solution pμ(t,x,y). We con-
sider the condition on μ under which pμ(t,x,y) admits the
same two sided estimates as p(t,x,y) up to the choice of
positive constants. We call this phenomenon stability of fun-
damental solution.

4 Main Result
The main result is the necessary and sufficient condition on
μ for the stability of fundamental solution. The precise state-
ment is as follows:

Theorem 2. (W. 2012)
Assume that the Green tight measure μ satisfies

∫∫

Rd×Rd
G(x,y)μ(dx)μ(dy)< ∞.

Then the stability of fundamental solution holds if and only if

inf{E (u,u) | u ∈ F ,
∫

Rd
u2dμ = 1}> 1, (4)

where F is the domain of the Dirichlet form E .

Note that the formula (4) describes the smallness of mea-
sure μ compared with the initial Dirichlet form E . Further-
more, this result is the same as that in Takeda [3], which
deals with the same problem in the framework of transient
Brownian motion.
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Locator function for concentration points of solutions of
a reaction-diffusion equation in heterogeneous media

Hiroko Yamamoto

Mathematical Institute, Tohoku University

1 Introduction

Consider the Neumann problem for a semilinear elliptic equation:
⎧
⎪⎨

⎪⎩

ε2Au − a(x)u + b(x)up + δσ(x) = 0 & u(x) > 0 in Ω,
n

∑
i,j=1

aij(x) ∂u
∂xj

νi = 0 on ∂Ω,
(1)

Ω
∂Ω

ν

where Ω ⊂⊂ Rn, ∂Ω ∈ C∞, and ν denotes the unit out-
ward normal to ∂Ω; ε > 0 and δ ≥ 0 are sufficiently
small; Au = ∑n

i,j=1 ∂/∂xi(aij(x)(∂u)/∂xj) is uniformly and
strictly elliptic; aij, a, b, σ ∈ C1(Ω); a(x) and b(x) are
strictly positive on Ω; σ ≥ 0, ‖σ‖L∞(Ω) = 1; the exponent p
satisfies 1 < p < (n + 2)/(n − 2).

Known Result (Homogeneous Case)

(i.e. aij(x) ≡ δij, a(x) = b(x) ≡ 1, δ = 0)

Consider the following single elliptic equation
{

ε2Δu − u + up = 0 & u(x) > 0 in Ω,
∂u/∂ν = 0 on ∂Ω.

∃ Ground state uε(x) = w0

(
x − Pε

ε

)
+ O(ε),

Pε : max. pt. of uε,

where w0 is a unique solution of
⎧
⎨

⎩

Δw0 − w0 + wp
0 = 0 & w0(y) > 0 in Rn,

w(0) = max
y∈Rn

w0(y), w0(∞) = 0,

and w0(y) = w0(|y|) decays exponentially.

∃Pεj → ∃P0 (εj ↓ 0).

Then P0 is the maximum point of the mean curvature of ∂Ω ([1]).

So, geometry of the domain determines the location of P0.

Our Question: Where is P0 in the heterogeneous case?

2 Preparations for generalization

First, there exists a minimal solution um,ε = um,ε(x) of (1) obtained
as the perturbation from δ = 0 (i.e. ‖um,ε‖L∞(Ω) = O(δ)).

Definition 1. An energy functional corresponding to (1):

Jε(u) :=
1
2

∫

Ω

{
ε2

n

∑
i=1

aij(x)
∂u
∂xj

∂u
∂xi

+ a(x)u(x)2
}

dx

− 1
p + 1

∫

Ω
b(x)u+(x)p+1 dx −

∫

Ω
δσ(x)u(x) dx.

For δ > 0 we use an energy functional:

Iε(v) := Jε(um,ε + v)− Jε(um,ε),

where u, v ∈ H1(Ω), u+(x) := max{u(x), 0}.

By the MPL, ∃ a critical point vε ∈ H1(Ω) of Iε. We call uε :=
um,ε + vε a ground state solution of (1).

Definition 2. For Q ∈ Ω, define the primary locator function Φ by

Φ(Q) := a(Q)1− n
2+

2
p−1 b(Q)−

2
p−1
{

det
(
aij(Q)

)} 1
2 .

Moreover, by calculating the energy Iε, ∃ I0 > 0: a const. s.t.

lim
ε↓0

1
εn Iε(vε) = min

{ 1
2

min
Q∈∂Ω

Φ(Q), min
Q∈Ω

Φ(Q)
}
{I0 − O(δ)} .

3 Main Results

Theorem 1. Assume uε j(Pε j) = maxx∈Ω uε j(x), Pε j → P0 as ε j ↓ 0.
Then: for sufficiently small δ,

(i) min
Q∈Ω

Φ(Q) < 1/2 min
Q∈∂Ω

Φ(Q)

⇒ P0 ∈ Ω. Moreover, |P0 − Q0| = O(δ),
where Q0 ∈ Ω is a global min. pt. of Φ(Q) over Ω.

(ii) min
Q∈Ω

Φ(Q) > 1/2 min
Q∈∂Ω

Φ(Q)

⇒ P0 ∈ ∂Ω. Moreover, |P0 − Q0| = O(δ),
where Q0 ∈ ∂Ω is a min. pt. of Φ(Q) over ∂Ω.

4 Examples of a concentration point P0

Example 1. n = 1, Ω = (0, 1), p = 2, aij(x) ≡ δij, δ = 0.

10
x

y

0.01
0.03

y = a(x)

y = b(x)

{
a(x) = x + 0.03,
b(x) = x + 0.01.

⇒ Φ(x)2 = a(x)5b(x)−4, P0 = 0.07.

Observation:

For any linear functions a(x), b(x),

• In most cases P0 ∈ ∂Ω = {0, 1},

• Even if P0 is an interior pt. of (0, 1),
P0 must be very close to x = 0 or x = 1.

Example 2. n = 2, Ω = B1(0), aij(x) ≡ δij, a(x) ≡ b(x), δ > 0.

⇒ Φ(Q) = a(Q)
1− 2

2+
2

p−1 b(Q)
− 2

p−1 = a(Q)
2

p−1 a(Q)
− 2

p−1 ≡ 1.

By (ii) of Theorem 1, P0 ∈ ∂B1(0).

Graph of σ(x)
/

a(x)

Where on the boundary?

We assume the graph of σ(x)/a(x) is as in the
figure on the right-hand side.

P0 is in a nbd. of the max. pt. of
σ(x)/a(x) on ∂Ω.
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On deformations of singularities of mixed polynomials
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Mixed polynomials
Let f (z, z̄) be a polynomial of variables z = (z1, . . . , zn) and z̄ =
(z̄1, . . . , z̄n)

f (z, z̄) := ∑
ν,μ

cν,μzνz̄μ,

where zν= zν1
1 · · ·zνn

n forν= (ν1, . . . ,νn) (resp. z̄μ= z̄
μ1

1 · · · z̄
μn
n for

μ= (μ1, . . . ,μn)). of this form is called a mixed polynomial [2].

Let g (x,y) and h(x,y) be real polynomials with variables x =
(x1, . . . , xn) and y = (y1, . . . , yn). Then the real polynomial map
(g (x,y),h(x,y)) : R2n →R2 can be given a mixed polynomial as

f (z, z̄) := g
(z+ z̄

2
,
z− z̄

2i

)
+ i h

(z+ z̄

2
,
z− z̄

2i

)
,

where z j = x j + i y j ( j = 1, . . . ,n). We can regard mixed polyno-
mial maps as smooth maps from R2n to R2.
A point z ∈ Cn is a singularity of f (z, z̄) if the gradient vectors

of ℜ f and ℑ f are linearly dependent at z.

A deformation of f is a polynomial map ft : Cn×C→C, (z, t ) �→
ft(z, z̄), with f0(z, z̄) = f (z).

Stable maps
Let C∞(R2n,R2) be the set of differential maps. It is well-known
C∞(R2n,R2) is a topological space.
Let f , g ∈C∞(R2n,R2). f and g are said to be right-left equiv-

alent if there exist diffeomorphisms h1 and h2 of R2n and R2

respectively such that h2◦ f = g ◦h1.

A map f : R2n → R2 is called a stable map if there exists a
neighborhood U f of f such that for any g ∈U f , g is right-left
equivalent to f .
If f : R2n →R2 is a stable map, for each singularity of f , one of

the following two conditions folds:

1. We can choose coordinates (u, x1, . . . , x2n−1) centered at x such
that f has the form:

(
u,

2n−1∑
j=1

±x2
j

)
.

2. We can choose coordinates (u, y, x1, . . . , x2n−2) centered at x
such that f has the form:

(
u,

2n−2∑
j=1

±x2
j + yu + y3

)
.

If the singularity x of f satisfies the condition (1), we call x a
fold singularity, and if it satisfies the condition (2), a cusp.
The set of stable maps is open and dense in the space of smooth

maps C∞(R2n,R2) topologized with the C∞-topology.

Higher differential d 2 f
Let U and V be small neighborhoods of a singularity x ∈ R2n

and f (x) ∈ R2. Choose coordinates {ξi } in U and {η j } in V . Let
E = Tx(U ) and F = T f (x)(V ). Then we can define the following
exact sequence

0 → L → E
d f→ F

π→G → 0,

where L = kerd f ,G = cokerd f and π is the linear map such
that Imπ= cokerd f .

Let k =∑
m am(∂/∂ξm) ∈ E , t =∑

i bi (∂/∂ξi ) ∈ L. We define the
map ϕ1 : E → L∗⊗F by

ϕ1(k, t ) = ∑
i , j ,m

(
am

∂2 f j

∂ξi∂ξm
bi

) ∂

∂η j

and then define the map d2 f : E → L∗⊗G by

d2 f (k)(t ) =π(ϕ1(k)(t )).

Lemma 1[1]
x is a fold singularity of f ⇐⇒ x satisfies the following condi-
tions:

1. the rank of the representation matrix of d2 f = 2n −1

2. ker(d2 f |L) = {0}

We can show the following theorems.

Theorem 1
Let f (z) be a 2-variable complex polynomial with an isolated
singularity at o and let U be a sufficiently small nbd. of o.
Then there exists a deformation ft(z) of f (z) such that the rank
of the representation matrix of d2( ft) is equal to 3 in U for any
0 < t << 1.

Theorem 2
Let f (z) = z

p
1 + z

q
2 and let U be a sufficiently small nbd. of o.

Then there exists a deformation ft(z) of f (z) such that ft(z) has
only fold singularities in U where 0 < t << 1.

The complex Hessian HC( f ) of f (z) is defined by

HC( f ) :=
(

∂2 f
∂z j∂zk

)
.

Theorem 3
Let f (z) and g (z) be 2-variable complex polynomials with an
isolated singularity at o having no common branches.
Then there exists a deformation ft g t(z) of f (z)g (z) such that
any singularity of ft g t(z) in U is either a Morse singularity or
the rank of the representation matrix of d2( ft g t) is equal to 3
for any 0 < t << 1.

To prove Theorem 1 and 2, we define the following deforma-
tion of the complex polynomial f (z):

ft(z) := f (z)+ t
(
β1z1+β2z2+

( β1

2β2

)
z̄2

1 +
( β2

2β1

)
z̄2

2 + z̄1z̄2

)
,

where 0 ≤ t << 1 and β1,β2 ∈C\ {0}.
To prove Theorem 3, we define the deformation ft(z)g t(z) of

f (z)g (z) as follows:

ft(z)g t(z) :=
(

f (z)+ t (β1z1+β2z2)
)(

g (z)+ t (γ1z1+γ2z2)
)
,

where 0 ≤ t << 1 and β j ,γ j ∈C\ {0} for j = 1,2.
We can take constants β j and γ j such that the deformations

satisfy the conditions of theorems.
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On Zp–orbit spaces of certain prehomogenous vector spaces

(Joint work with Pr. Akihiko Yukie (Kyoto University))

Kazuaki Tajima
(Mathmatical Institute, Tohoku University, D4)

sa7m19@math.tohoku.ac.jp

1 PV as moduli space of fields

Let k be a field. Let G be an connected reductive
algebraic group defined over k and V a finite vector
space over k which acts G rationally. Then, a pair
(G, V ) said to be a Prehomonenous vector space
(PV) if there exists a Zariski open orbit. For the rest
of this poster, we assume V is an irreducible represen-
tation of G for the convinience. A typhical example of
PV is the space of quadratic forms:

Example 1.1. Put G = GL(1) × GL(n) and V =
Sym2kn =(the space of n–ary quadratic forms). For
g = (t, g1) ∈ G, x = x(v) ∈ V , we define gx = tx(vg1).
Then the couple (G,V ) is a PV.

Let (G,V ) be a PV defined over k. We call (G,V ) is
regular PV if there exists w ∈ Vk such that Gw is re-
ductive. M.Sato and T.Kimura ware classtified regular
PV defined over algbraic closed field with charactaris-
tic 0 for 29 classes (1977, Nagoya J. Math.).
For any regular PV (G, V ), it known that there ex-

ists the poloynomial P (x) ∈ k[V ] such that P (gx) =
χ(g)P (x) for all x ∈ V, g ∈ G and suitable character
χ. The poloynomial P (x) is called rerative invari-
ant polynomial of (G,V ). For example, in the space
of quadratic forms, the relative invariant polynomial
is equal to the determinant of quadratic forms. Set
V ss = {x ∈ V ;P (x) �= 0}.
We consider the following Sato–Kimura type PV’s

in this section:

Table 1
i G V
2 GL(1)×GL(2) Sym2 k2

2 GL(2)×GL(2)×GL(2) M(2)⊗ k2

3 GL(1)×GL(3) Sym3 k2

4 GL(3)×GL(2) Sym2 k3 ⊗ k2

5 GL(5)×GL(4) ∧2k5 ⊗ k4

Then Exi denotes the set of conjugate classes of Ga-
lois extension of k whose irreducible polynomial is de-
gree i without multiple roots.

Theorem 1.2 (Wright–Yukie, 1992). For each 2 ≤
i ≤ 5, we consider a pair (G,V) as in table 1.

(1) We can construct natural map αV : Gk\V ss
k � x �→

k(x) ∈ Exi, and these maps are always surjective.

(2) For x ∈ V ss
k , if k(x) = k′ ∈ Exi, there exists

correspond homomorphism ψx : Gal(k′/k) → Si.
Futhermore, if x, y ∈ V ss

k , k(x) = k(y) = k′, then

x and y are Gk–equivarent ⇔ ∃r ∈ Si;ψx = rψyr
−1.

Note that ψx is the permutation determined form
the Galois action for the “Zero set” of x.

2 Zp–orbits of Symn
Zp

In this section, let (G,V ) be as in Ex.1.1.
The following theorem is well–known:

Theorem 2.1 (Jordan decomposition). Let p be an
odd prime. For all x ∈ V ss

Zp
, there exists g ∈ G

Zp such
that

gx =

⎛
⎜⎜⎜⎝
pa1A1

pa2A2

. . .

pakAk

⎞
⎟⎟⎟⎠ ,

where ai’s and Aj’s are satisfy a1 < a2 < · · · <
ak, ai ∈ Z≥0, detAj ∈ Z

×
p .

A.Yukie gaved another simple proof of Theorem 2.1
from the invariant theoritic view.

Proof of Theorem 2.1. We’ll denotes ∗̃ the reduction
modulo p of ∗. Choose an integer a1 ∈ Z≥0 and a
matrix x(1) ∈ M(n)

Zp stisfying x = pa1x(1), x̃(1) �= 0.

Then the matrix x̃(1) is rank i over Fp for some i ≤ n.
By choose a lift of x̃(1) over Zp, we can assume x(1) =(

A pB

ptB pC

)
with detA ∈ Z

×
p .

Now we claim that gx(1) =
(

A 0
0 pC′

)
for some g ∈

GL(n), C ′ ∈ M(n − i). So applying the induction re-
spect to the size of C ′, finish the proof. Therefore, we
have to prove this claim.
If g =

(
α 0
β γ

) ∈ GL(n), then

gx(1) =

(
αAtα α(Atβ + pBtγ)

(βA+ pγtB)tα βAtβ + pC ′′

)
.

Since A is invertible, we can choose α = Ei, β =
−ptBA−1 and γ = En−i, as desired.

In the above proof, note that x̃(1) is unstable respect
to the projection map π : V

Fp \ {0} → P(V )
Fp when-

ever i < n. Also, above simple situation caused from
the equivariant–morse–stratification of Sym2 kn exac-
try determined from the degree of forms (The reason
why can be using induction!). But, the equivariant–
morse–stratification of the other spaces more difficult.
We currently study the Zp–orbits of the following

space by using the above idea now:

G = GL(2)×GL(3), V = Sym2 k3 ⊗ k2.
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A localization of potentials

NISHIMORI Yasuhito
(Mathematical Institute Tohoku University)

Introduction

Let (E(α),D(E(α))) be a Dirichlet form generated by symmetric
α-stable process, where 0 < α < 2. A function V on R

d is non-
negative and bounded with compact support. If the function V
satisfies

λV := inf{E(α)(u, u) ; u ∈ D(E(α)),
∫

R
d

u2V dx = 1} > 1,

V is subcritical. For a subcritical function W and R ∈ R
d, we

set WR(x) = W (x + R) and qR = V + WR. For subcritical
functions V , W and large |R|, we show that λqR

> 1. B. Simon
shown [2] this for α = 2. We extend his fact to symmetric
α-stable processes (α < d).

1 Preliminaries

({Xt}, Px) is a symmetric α-stable process, that is, symmetric
Markov process generated by (−Δ)α/2. Set

AV
t =

∫ t

0

V (Xt)dt.

We see from [1] that λqR
> 1 is equivalent to

sup
x∈R

d

Ex[exp(AqR∞ )] < ∞. (1)

We show (1). Set

bR = sup
x∈R

d

Ex[exp(AV
∞)] ∨ sup

x∈R
d

Ex[exp(AWR∞ )].

By the spatial homogeneity,

sup
x∈R

d

Ex[exp(AWR∞ )] = sup
x∈R

d

Ex[exp(AW
∞)].

Namely, bR = b0. Thus we set b = b0. In our proof, the spatial
homogeneity plays a most important role. We assume that the
supports of V and W are contained by B := B(0, r) and BR :=
B(R, r) respectively. Here B(x, r) is a ball centered at x with
radius r. τ1 is the first hitting time to B, i.e., τ1 = inf{t >
0 ; Xt ∈ B}. In addition,

σi := inf{t > τi ; Xt ∈ BR}, i ≥ 1,

τi := inf{t > σi−1 ; Xt ∈ B}, i ≥ 2.

Then the path space Ω is divided by Ai’s, where

A1 = {τ1 = ∞}, Ai = {τi = ∞, τi−1 < ∞},
and so

sup
x∈R

d

Ex[exp(AqR∞ )] = sup
x∈R

d

∑
i≥1

Ex[exp(AqR∞ ); Ai]

≤ sup
x∈R

d

(
Ex[exp(AqR∞ ); A1] + J(2; x)

)
+

∑
i≥2

sup
x∈R

d

I(i;x) +
∑
i≥3

sup
x∈R

d

J(i; x). (2)

Here

I(i;x) = Ex[exp(AqR∞ ); Ai, {σi−1 < ∞}],
J(i;x) = Ex[exp(AqR∞ ); Ai, {σi−1 = ∞}].

2 Main theorem

Lemma 2.1. There exists some non-negative constant CV
B→BR

and CW
BR→BR

such that

sup
y∈B

Ey[exp(AV
σ1

); {σ1 < ∞}] ≤ CV
B→BR

,

sup
z∈BR

Ez[exp(AWR
τ1

); {τ1 < ∞}] ≤ CW
BR→B .

Proof. Because V is subcritical, that is, λV > 1, we can choose
pV > 1 such that pV < λV . This means λpV V > 1, and so
supx∈R

d Ex[exp(pV AV
∞)] < ∞. Set 1/qV = 1 − 1/pV .

sup
y∈B

Ey[exp(AV
σ1

); {σ1 < ∞}]

≤ sup
y∈B

Ey[exp(pV AV
σ1

)]1/pV

(
sup
y∈B

Py(σ1 < ∞)
)1/qV

=: CV
B→BR

< ∞.

By the same manner, we can choose the constant CW
BR→B .

For y ∈ B, Py(σ1 < ∞) ≤ const(r/|R|)d−α. From this, we
see that CV

B→BR
converges to 0 as |R| → ∞. In addition, we

see that CW
BR→B converges to 0 as |R| → ∞.

By the strong Markov property and the spatial homogeneity,
we have

sup
x∈R

d

(Ex[exp(AqR∞ ); A1]+J(2; x)) ≤ b+CB→BR
+(1+b)CW

BR→B ,

and

I(i; x) ≤ bi(CV
B→BR

)i−1, for i ≥ 2,

I(j; x) ≤ bi−1CW
BR→B(CV

B→BR
)i−2, for i ≥ 3.

By (2), we have the following theorem.

Theorem 2.1. If both bCV
B→BR

and bCW
BR→B are less than 1,

then

sup
x∈R

d

Ex[exp(AqR∞ )] ≤ b + CV
B→BR

(
1 +

b2

1 − bCV
B→BR

)

+CW
BR→B

(
1 + b +

b2CV
B→BR

1 − bCV
B→BR

)
.

Corollary 2.1. For α < d and subcritical potentials V , W , the
following holds

lim
|R|→∞

sup
x∈R

d

Ex[exp(AqR∞ )] = b.
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Penalizations for Generalized Feynman-Kac Functionals

Masakuni MATSUURA∗†
Mathematical Institute, Tohoku University

March 5, 2013‡

1 Feynman-Kac penalization for PCAFs with
non-local potentials

Let X = (Ω,F ,Ft ,Px,Xt) be a transient symmetric α-stable process
(0 < α < 2) on R

n and let Aμ,F
t be a positive additive functional (“PAF”):

Aμ ,F
t := Aμ

t +∑
s≤t

F(Xs−,Xs),

where Aμ
t is a positive continuous additive functional (“PCAF”) with Re-

vuz measure μ and F is a bounded measurable positive symmetric func-
tion vanishing on diagonal set. eAμ ,F

t is then decomposed as follows.

eAμ
t +∑s≤t F(Xs−,Xs) = LteA

μ+μF1
t

Here,

μF1
(dx) :=

{
c
∫

F1(x,y)|x− y|−n−αdy
}

dx, F1 := eF −1,

and Lt is an exponential martingale. We give the spectral function

λμ+μF1
(θ) := inf{E L( f , f )+θ( f , f );

∫
f 2d(μ +μF1

) = 1} for θ ≥ 0,

where E L is the Dirichlet form corresponding to the Girsanov trans-
formed process by Lt , that is, dPL

x := LtdPx and E L is given by

E L( f , f ) = c
∫

dc
( f (x)− f (y))2eF(x,y)|x− y|−n−αdxdy.

We then solve the Feynman-Kac penalization problem in terms of the
bottom λμ+μF1

(0) of λμ+μF1
(θ):

Theorem 1 ( [M2012] ). Let Λ∈Fs and assume that μ+μF1
is a Green-

tight Kato measure. There exists a limit

P̃x[Λ] = lim
t→∞

Ex[eAμ ,F
t 111Λ]

Ex[eAμ,F
t ]

.

(a) If λμ+μF1
(0)> 1 (μ +μF1

is subcritical), then P̃x is given by

dP̃x =
eA

μ+μF1
s h(Xs)

h(x)
LsdPx, h(x) := E

L
x [e

A
μ+μF1∞ ].

(b) If λμ+μF1
(0)< 1 (μ +μF1

is supercritical), then P̃x is given by

dP̃x =
e−θ0s+A

μ+μF1
s h(Xs)

h(x)
LsdPx.

Here, θ0 > 0 satisfies λμ+μF1
(θ0) = 1 and h is the ground state whose

eigenvalue is θ0.
(c) If λμ+μF1

(0) = 1 (μ+μF1
is critical) and μ+μF1

belongs to a restricted

Kato class, then P̃x is given by

dP̃x =
eA

μ+μF1
s h(Xs)

h(x)
LsdPx.

Here, h is the ground state given by the compact embedding of the
extended Dirichlet form to L2(μ +μF1

).

∗Mail : sa9d10@math.tohoku.ac.jp
†Web : http://www.math.tohoku.ac.jp/˜sa9d10/
‡Poster session, Global COE 5th symposium “Weaving Science Web beyond

Particle-Matter Hierarchy”.

2 Feynman-Kac penalization for non-local
PAF with 0-energy parts

Let (E ,Fe) be the extended Dirichlet space and U ∈ Fe ∩Cb(R
n∗). For

AF U(Xt)−U(X0), Fukushima’s decomposition yields the AF NU
t with

unbounded variation:

NU
t =U(Xt)−U(X0)−MU

t ,

where MU
t is a martingale. NU

t is said to be a 0-energy part. We give
the multiplicative functional (“MF”)

eAμ,F,U
t := exp

(
Aμ ,F

t +NU
t

)

and consider the penalization for the generalized Feynman-Kac multi-
plicative functional (“FKMF”) eAμ,F,U

t .
We employ the Girsanov transform in the sense of Chen and Zhang:

The generalized FKMF eAμ ,F,U
t is decomposed as follows.

eAμ,F,U
t =WteU(Xt)−U(x)eAμ+μV

t

Here, Wt is the exponential martingale and μV is given by

μV (dx) = c

{∫ eF(x,y)+U(x)−U(y)−U(x)+U(y)−1

|x− y|n+α

}

dx.

We then define dPW
x :=WtdPx.

Kim and Kuwae give the characterization of the gaugeability of gen-
eralized FKMF:

Theorem 2. Let g(x) :=Ex[eAμ,F,U
∞ ]. ||g||∞ <∞ if and only if λμ+μV (0)> 0,

where

λμ+μV (θ) := inf

{
Q( f , f )+θ( f , f );

∫
f 2d(μ +μV ) = 1

}

and Q is the quadratic form given by

Q( f , f ) = E ( f , f )+E (U, f 2)−
∫

f 2dμ −
∫

dc

c f (x) f (y)F1(x,y)
|x− y|n+α dxdy.

We see that

Q( f , f )+
∫

f 2d(μ +μV ) = E W ( f , f )

and this gives the last characterization of gaugeability is equivalent to

inf

{
E W ( f , f );

∫
f 2d(μ +μV ) = 1

}
> 1.

We find that the penalization for generalized FKMFs is solved if the Kato
potential μ +μV is subcritical:

Ex[eAμ ,F,U
t |Fs]

Ex[eAμ,F,U
t ]

= eAμ ,F,U
s

Ex[eAμ ,F,U
t−s ◦θs|Fs]

Ex[eAμ,F,U
t ]

= eAμ ,F,U
s

EXs [e
Aμ ,F,U

t−s ]

Ex[eAμ ,F,U
t ]

→ eAμ,F,U
s g(Xs)

g(x)
.
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On the analysis of strategies in
generalized stochastic reachability games

AHMAD TERMIMI BIN AB GHANI
{ SA9D12 }@MATH.TOHOKU.AC.JP

1. PROBLEMS OF INTEREST

1. Determinacy (Values of games)
In the sense that from each position,
the player has an optimal value.

2. Optimal strategies
Do the players have an optimal strat-
egy? If so, what type of strategy?

2. GAMES

Definition 1. A (two-player infinite) stochas-
tic game is a quadruple G = (S,AI, AII, δ),
where
- S, AI and AII are nonempty finite sets,
- δ is a function from S ×AI ×AII into S.
Elements of S are called states.
Elements of AI and AII are called actions of
Player I and Player II.
δ is called a transition function.

Definition 2 (Mixed strategy). A (mixed)
strategy of Player I in G is any function σ :
Ωfin → D(AI), where D(AI) be the set of prob-
ability distributions on AI. Similarly, a strategy
of Player II is any function τ : Ωfin → D(AII).

Definition 3 (Memoryless strategy). A strat-
egy σ of Player I is called memoryless if σ : S →
D(AI). A memoryless strategy of Player II is de-
fined similarly, i.e., τ : S → D(AII).

3. BACKGROUNDS

Let Ωs = {w ∈ Ω : w(0) = s} and Ωfin
s = {q ∈ Ωfin : q(0) = s}.

Definition 4. For a pair (σ, τ) ∈ ΣI × ΣII of strategies and a state s ∈ S,
Pσ,τ
s denotes the probability measure on Ωs defined by

Pσ,τ
s ([p]) =

∏
n∈{1,|p|−1}

∑
(a,b)∈AI×AII

(p(n−1),a,b)∈δ−1(p(n))

σ(p � n)(a)τ(p � n)(b)

for any p ∈ Ωfin
s , where [p] = {w ∈ Ω : p ⊂ w}.

In general, for a function F : Ω → [0, 1] such that Pσ,τ
s (F ) =

∫
Ωs

FdPσ,τ
s exists,

• Pσ,τ
s (F ) means the expected value of an infinite game Gs(F ) when Player I and Player

II use the strategies σ and τ , respectively.

• We say that the game Gs(F ) is determinate if and only if

sup
σ∈ΣG

I

inf
τ∈ΣG

II

Pσ,τ
s (F ) = inf

τ∈ΣG

II

sup
σ∈ΣG

I

P σ,τ
s (F ) holds for any s ∈ S. (1)

• We write valGs (F ) instead of supσ∈ΣG

I
infτ∈ΣG

II
Pσ,τ
s (F ), and call the value of game Gs(F ).

Definition 5. Let F : Ω → [0, 1] and ε ∈ [0, 1]. Suppose that Gs(F ) is determinate.
A strategy σ ∈ ΣI of Player I is ε-optimal if

inf
τ∈ΣG

II

Pσ,τ
s (F ) ≥ vals(F )− ε holds for any s ∈ S.

A strategy τ ∈ ΣII of Player II is ε-optimal if

sup
σ∈ΣG

I

Pσ,τ
s (F ) ≤ vals(F ) + ε holds for any s ∈ S.

5. EXAMPLE

Example 1. Player I has no optimal strategy in
some reachability games.

Proof. Let S = {s0, s1, s2}, AI = {x1, x2};
AII = {y1, y2}. Define a transition function δ
δ(s0, x1, y1) = s0; δ(s0, x2, y2) = s2;
δ(s0, x1, y2) = δ(s0, x2, y1) = s1, and
δ(si, x, y) = si for any i ∈ {1, 2} and
(x, y) ∈ AI ×AII.

Consider the game G(RG,T ) with T = {s1}.
One can prove that vals0(RG,{s1}) = 1.
Fix a strategy σ ∈ ΣI. We construct τ ∈ ΣII

such that Pσ,τ
s0 (RG,{s1}) < 1. For ρ ∈ Ωfin,

define
- τ(ρ)(y1) = 1 if σ(ρ)(x1) = 1, and
- τ(ρ)(y2) = 1 otherwise.
It is clear that Pσ,τ

s0 (RG,{s1}) < 1 by definition
of G and τ .

6. RESULTS

Theorem 1 (DETERMINACY). For any state
s ∈ S, the equation V G,�(s) = vals(RG,�) holds.

Proof. It is enough to show the inequalities

inf
τ∈ΣII

sup
σ∈ΣI

Pσ,τ
s (RG,�) ≤ V G,�(s)

≤ sup
σ∈ΣI

inf
τ∈ΣII

Pσ,τ
s (RG,�) hols.

• To show the first inequality, choose an
optimal strategy τ∗ of Player II in the
one-step game G(V G,�).

• We show that τ∗ satisfies the inequality

sup
σ∈ΣI

Pσ,τ∗
s (RG,�) ≤ V G,�(s) ∀s ∈ S.

• It is enough to show that

sup
σ

Pσ,τ∗
s (RG,�

n ) ≤ V G,�(s) ∀s ∈ S, n ∈ N.

(We show this by induction on n).

For the second inequality, we have

Pσ,τ
s (RG,�

n ) ≤ Pσ,τ
s (RG,�)

since RG,�
n (w) ≤ RG,�(w) for any w ∈ Ω.

Hence,

sup
σ

inf
τ
Pσ,τ
s (RG,�

n ) ≤ sup
σ

inf
τ
Pσ,τ
s (RG,�) holds.

Note that any finite game is determinate. So,
we have

V G,�
n (s) = vals(RG,�

n ) = sup
σ

inf
τ

Pσ,τ
s (RG,�

n ) holds.

Thus, the second inequality holds.

4. GENERALIZED REACHABILITY

Definition 6 (Labeling function). A function
� is called a label on S if dom(�) ⊂ S and �(s) ∈
[0, 1] for any s ∈ dom(�).

Definition 7 (Payoff function). We define a
payoff function RG,� : Ω → [0, 1] associated to
label � by

RG,�(w) =

{
�(w(Nw)) if (∃N ∈ N)[w(N) ∈ dom(�)],

0 otherwise,

where Nw is the least natural number N such
that w(N) ∈ dom(�).

Definition 8. A game of the form G(RG,�) is
called a generalized reachability game.

For a subset T of S, let RG,T = RG,�T ,
where �T : T → {1}.

Remark 1. Games of the form G(RG,T ) are
called reachability games.

Definition 9 (Limit value). Let � a label on S.
For any s ∈ S and n ∈ N, define V G,�

n : S →
[0, 1] inductively by

V G,�
0 (s) =

{
�(s) if s ∈ dom(�),

0 otherwise,

V G,�
n+1(s) =

{
�(s) if s ∈ dom(�),

vals(V
G,�
n ) otherwise.

We let V G,�(s) = limn→∞ V G,�
n (s) for any state

s, and we call it the limit value at s.

7. RESULTS

Corollary 2. Player II has a memoryless optimal
strategy in any generalized reachability game.

Theorem 3. In every generalized reachability
game G(RG,�), there exist an ε-optimal memo-
ryless strategy of Player I for any ε > 0.
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Characterization of ∅′-Schnorr Randomness via Relative Randomness
NingNing Peng

sa8m42@math.tohoku.ac.jp
Mathematical Institute, Tohoku University

Questions
This is a join work with Kojiro Higuchi.

Question 1 Can we define some randomness
notions in terms of another randomness no-
tions?

Question 2 How can we define it?

Let R and S be two randomness notions.

Question 3 (∃Γ ⊂ 2ω)[R =
⋂

X∈Γ X-S] or
(∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X-S]?

where X-R and X-S are relativizations of R
and S to X, respectively.

Question 4 What kinds of Γ satisfy above re-
lations ?

Note: Q1 same to Q3, Q2 same to Q4.

Randomness Notions
Definition 1 (Martin-Löf , 1966) (i)

A Martin-Löf test, or ML-test for
short, is a uniformly c.e. sequence
(Gm)m∈N

of open sets such that
∀m ∈ N μ(Gm) ≤ 2−m.

(ii) A set Z ⊆ N fails the test if Z ∈ ⋂m Gm,
otherwise Z passes the test. Z is ML-
random if Z passes each ML-test.

Definition 2 (Kurtz, 1981) A generalized
ML-test is a uniformly c.e. sequence
(Gm)m∈N

of open sets such that μ(
⋂

m Gm) =
0. Z is weakly 2-random if it passes every
generalized ML-test.

Definition 3 (Schnorr, 1971) A Schnorr
test is a ML-test (Gm)m∈N

such that μGm is
computable uniformly in m. A set Z ⊆ N fails
the test if Z ∈ ⋂

m Gm, otherwise Z passes
the test. Z is Schnorr random if Z passes
each Schnorr test.

Definition 4 A martingale is a function d :
2<N → R≥0 that satisfies for every σ ∈ 2<N

the averaging condition d(σ) = d(σ0)+d(σ1)
2 .

A martingale d succeeds on a set A if
lim supn→∞ d(A � n) = ∞.

Definition 5 We say that Z is computably
random if no computable martingale succeeds
on Z.

We use ML, W2R, SR, CR to denote the set of
1-random, weakly 2-random, Schnorr random
and computably random reals respectively.

Lowness and Highness
Definition 1 Let R and S be two randomness notions. We identify these notions with the sets
of all random reals in the sense of these notions.

Low(R, S) = {X ∈ 2ω : R ⊂ X-S}

High(R, S) = {X ∈ 2ω : X-R ⊂ S}
where X-R and X-S are relativizations of R and S to X, respectively.

We can prove Q3 is equivalent to Q5:

Question 5 R =
⋂

X∈Low(R,S) X-S or
⋃

X∈High(R,S) X-R = S ?
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Answer a Problem

Theorem 1 (Yu, 2012) ∅′-Schnorr ran-
domness =

⋂
X∈L

X −MLR.

where L is the set of all the low sets.

Problem 1 (Yu, 2012) Does ∅′-Schnorr
randomness =

⋂
X∈L∩G

X −MLR?

where G is the set of all the 1-generic sets.

Theorem 2 For any ∅′-Schnorr test
{Ue}e∈ω, there exist a low 1-generic real
Z and a Z-Martin-Löf test {Ve}e∈ω with⋂

e∈ω Ue ⊂
⋂

e∈ω Ve.

Method of proof: A finite injury argument.

Corollary 1 ∅′-Schnorr randomness
=
⋂

X∈L∩G

X −MLR.

This give an affirmative answer to Yu’s prob-
lem. Recall that a real A is said to be LR-
reducible to B, abbreviated A ≤LR B, if every
real Martin-Löf random relative to B is also
Martin-Löf random relative to A.

Theorem 3 (Diamondstone, 2012) For
any low real X,Y , there exists a low c.e. real
Z such that X,Y ≤LR Z.

We have the following similar theorem:

Theorem 4 For any low real X,Y , there ex-
ists a low 1-generic real Z such that X,Y ≤LR

Z.

Positive and Negative

Positive Answer to Q1 and Q2:

Theorem 5 (Yu, 2012)⋃
X∈High(MLR,∅′-SR) X-MLR = ∅′-SR

This is a positive answer for Q1’ in the uniou
part. In fact, Yu also shown that Γ can be
MLR ∩ High(ML, ∅′ − SR). This is a inter-
esting answer of Q2.
We give a New Characterization of MLR.

Theorem 6
⋃

X∈PA X-CR = MLR.

Negative Answer to Q1 and Q2:
�
�

�
�Yu, Merkle’s answers:

Theorem 7 (Yu, 2012) ¬∃Γ ⊂ 2ω such
that W2R =

⋂
x∈Γ X −MLR.

Theorem 8 (Merkle and Yu, 2013)
¬∃Γ ⊂ 2ω such that W2R =

⋃
x∈Γ X −MLR.

�
�

�
	Our answers:

Theorem 9 SR =
⋂

X∈Low(CR,SR) X-SR 
=
CR.

Theorem 10 ∅′ − SR =⋃
X∈High(SR,CR) X-SR 
= CR.

Theorem 11
⋂

X∈Low(W2R,CR) X-CR 
=
W2R.

Summary of Results
⋃

X∈High(R,S) X-R = S
⋂

X∈Low(R,S) X-S = R

W2R

MLR

0’-SR

CR

SR

0’-SR W2R MLR CR SR

?

Yes

R
S

Yes Yes Yes

No No No
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Deformations of isotropic submanifolds in Kähler manifolds
Satoshi Ueki

(Department of Mathematics, Tohoku University, D2)

Background

(P 2n,ω, J , g ) : Kähler mfd

M k ⊂ P : isotropic or Lagrangian submfd
�

�

�

�

Definition

• M : isotropic
def⇐⇒ω|M ≡ 0

• M : Lagrangian
def⇐⇒ω|M ≡ 0, k = n

Hamiltonian volume minimizing problem
Find M ⊂ P which is Hamiltonian volume
minimizing

i.e. vol(M) ≤ vol(φ(M))

for ∀φ ∈ Ham(P,ω)

Remark M ⊂ P : Ham vol min
=⇒ M ⊂ P : Hamiltonian stable
=⇒ M ⊂ P : Hamiltonian minimal

Definitions and Properties

M ⊂ P : isotropic submfd

=⇒ T ⊥M = J (T M)⊕ν

ιt : M → P : deformation of M

ξt := d

d t
ιt : variation vector field

αξt
:=ω(ξt , ·) ∈Ω1(M)

�

�

�

�

Definition
• ιt : isotropic deform

def⇐⇒ ι∗t ω= 0 (∀t )
⇐⇒ dαξt

= 0 (∀t ) (∵ Cartan’s formula)

• ιt : exact deform
def⇐⇒αξt

: exact

• ιt : Hamiltonian deform
def⇐⇒ ιt =φt

h for some ht ∈C∞(N (M))

Remark ξ : exact vari, ξ= η+ρ
(
η ∈ J (T M), ρ ∈ ν

)
=⇒ η : Ham vari

�

�

�

�

Definition
• M ⊂ P : isotro(, exact, Ham) minimal

def⇐⇒ d

d t

∣∣∣
t=0

vol(ιt(M)) = 0

for ∀ιt : isotro(, exact, Ham) deform

Proposition [B. Chen, J-M. Morvan]

• M ⊂ P : exact minimal
⇐⇒ d∗αH = 0 (H : mean curv vec of M ⊂ P)

�

�

�

�

Definition
• M ⊂ P : isotro(, exact, Ham) stable

def⇐⇒ M ⊂ P : isotro(, exact, Ham) minimal

&
d2

d t 2

∣∣∣
t=0

vol(ιt(M)) ≥ 0

for ∀ιt : isotro(, exact, Ham) deform

Main Result

Theorem

P 2n : Kähler mfd

Q2k ⊂ P 2n : totally geod Kähler submfd

M k ⊂Q2k cpt Lag submfd
(=⇒ M ⊂ P : isotro submfd)

(1) M ⊂Q : Ham minimal
=⇒ M ⊂ P : exact minimal

(2) P : nonposi sec curv, M ⊂Q : minimal
M ⊂Q : Ham stable

=⇒ M ⊂ P : exact stable

proof

(1) m.c.v. of M ⊂Q = m.c.v. of M ⊂ P

(2) ξ : exact vari, ξ= η+ρ
(
η ∈ J (T M), ρ ∈ ν

)
d2

d t 2

∣∣∣
t=0

vol(ιt(M))

=
∫

M

(‖∇⊥ξ‖2−‖Aξ‖2−∑k
i=1〈R(ei ,ξ),ξ),ei〉

)

=
∫

M

(‖∇⊥η‖2−‖Aη‖2−∑k
i=1〈R(ei ,η),η),ei〉

+‖∇⊥ρ‖2 −∑k
i=1〈R(ei ,ρ),ρ),ei〉

)
≥ 0
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Quasi-stationary distributions for Markov processes and its applications

Seunghwan, Yang
Department of Mathematics, Tohoku University

Introduction

We study the problem of the existence and uniqueness
of quasi-stationary distributions(QSD). The study of quasi-
stationary distributions for branching processes began with
the work of Russian Mathematician A. M. Yaglom. In [i],
P.A.Ferrari et al. study the problem for general continuous
Markov Processes and E.A.van Doorn consider the problem
for birth and death processes. In particular in [ii] a neces-
sary and sufficient condition for the existence and uniqueness
is obtained. By applying this result, we check the existence
and uniqueness of quasi-stationary distribution for three typ-
ical models, birth and death processes with constant rates,
linear birth and death processes and logistic birth and death
processes. We consider the application of quasi-stationary
distribution on field of demography or biology.

The general theory for QSD

Notations and Assumptions Let {Xt : t ≤ 0} be a con-
tinuous time Markov process on a state space E of form
0 ∪ {1, 2, · · · }, where 0 is an absorbing state and E∗ :=
{1, 2, · · · } is a irreducible transient class. Let Q be the cor-
responding transition rate matrix whose component qij rep-
resents the rate of jumping from i to j. We assume that Q
is conservative and honest. Let T0 be the first hitting time
at 0, T0 = inf{t ≥ 0 ; Xt = 0}. We further assume that the
expectation of T0 is finite for any i ∈ E∗.
Definitions

1) α ∈ P(E∗) : quasi-stationary distribution (QSD)

def⇐⇒ α(A) = Pα(Xt ∈ A| T0 > t), ∀t ≥ 0, A ⊂ E∗

2) α ∈ P(E∗) : quasi-limiting distribution (QLD)

def⇐⇒ ∃ ν ∈ P(E∗) s.t.
α(A) = lim

t→∞Pν(Xt ∈ A| T0 > t), A ⊂ E∗

3) α ∈ P(E∗) : Yaglom limit

def⇐⇒ α(A) = lim
t→∞ Px(Xt ∈ A| T0 > t), ∀x ∈ E∗, A ⊂ E∗

QSD ⇐⇒ QSD ⇐= Yaglom limit.

The existence of QSD Under the above assumptions and
the following condition;

lim
i→∞

Pi(T0 < t) = 0 for any t ≥ 0, i ∈ E∗,

we see from [i] that the existence of quasi-stationary distri-
bution is equivalent to

Ei[e
λT0 ] < ∞,

for some λ > 0 and for some i ∈ E∗ (and hence for all i).

In case of birth and death processes

Notations and Assumptions We consider a birth and
death process on E with birth coefficients λi and death coef-
ficients μi, for i ∈ E. We assume that λ0 = μ0 = 0, λi > 0,
μi > 0, i ≥ 1. We further assume that the eventual absorp-
tion at 0 is certain. This condition is equivalent to

∞∑

i=1

1

λiπi
= ∞ where π1 = 1; πi =

λ1λ2 · · ·λi−1

μ2μ3 · · ·μi
, i = 2, 3, · · · .

In case of birth and death processes, the transition probabil-
ities is given by

Pij(t) = πj

∫ ∞

0

e−xtQi(x)Qj(x)dψ(x),

where ψ is the unique positive probability measure on [0,∞).
Let ξ1 be the infimum of support of ψ. Then ξ1 plays a crucial
role on the existence of quasi-stationary distribution together
with the following sum;

S =

∞∑

n=1

1

λnμn

∞∑

i=n+1

πi.

The existence of QSD
Theorem ([ii]) A necessary and sufficient condition for

the existence of QSD is as follows;

1) If the sum S converges, then ξ1 > 0 and there is pre-
cisely one QSD.

2) If the sum S diverges and ξ1 > 0, then there is a one-
parameter family of QSDs.

3) If the sum S diverges and ξ1 = 0, then there is no QSD.

Examples

1) birth and death processes with constant rates; If λi =
λ, μi = μ, i ≥ 0, then the Yaglom limit is aj =
j(1 − β)2βj−1, for j = 1, 2, · · · . If μ > λ, then

ξ1 = (
√
λ−√

μ)2 > 0 and S < ∞. So, there is a unique
quasi-stationary distribution. If μ = λ, then ξ1 = 0 and
there is no quasi-stationary distribution.

2) linear birth and death processes; If λi = iλ, μi =

iμ, i ≥ 0, then the Yaglom limit is aj = (1− λ
μ )
(

λ
μ

)j−1

,

for j ≥ 1. So ξ1 = μ− λ > 0, S = ∞. Therefore, There
are infinitely many QSDs.

3) logistic birth and death processes; If λi = λi, μi =
μi+ ci(i− 1), i ≥ 0, the infinite is a entrance boundary
in Feller’s sense. This implies that the sum S converges.
So, there is a unique QSD.

The application of QSD

In demography or biology, the extinction rate of X start-
ing form μ at time t ≥ 0 is given by

γμ(t) = −
∂
∂tPμ(T0 > t)

Pμ(T0 > t)
.

If α is a QLD for X started from a probability measure μ on
E∗, then

lim
t→∞ γμ(t) = γα(0).

That is, the existence of a QLD for X with initial distribution
μ implies the existence of a long term mortality plateau.

References
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istence of quasi-stationary distribution. A renewal dy-
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ii) E. A. van Doorn , Quasi-stationary distributions and
convergence to quasi-stationarity of birth-death pro-
cesses, Adv. in Appl. Probab, 23 (1991), 683-700.

yamag
Typewritten Text
P-77



Optimal stopping and its applications to
mathematical finance

Xiaohan Wang
Mathematical Institute, Tohoku University, Japan

Optimal stopping problems often arise when we need to find the best time or the
best decision rule to make actions. These kinds of problems often exist in
economics and finance, for example, to find the optimal stopping time to exercise
an American type option.
In general, an optimal stopping problem has the following descriptions: let
(Ω, F ,P) be a complete probability space with a standard Brownian motion
B = {Bt; t ≥ 0}, and consider the diffusion process on state space I = (a, b) ⊆ R

with endpoints −∞ ≤ a < b ≤ ∞ and dynamics
dXt = μ(Xt)dt + σ(Xt)dBt, X0 = x,

with coefficients μ and σ satisfying certain conditions. Let h(x) be the reward
function, Λt be the discounting rate functional of Xt. Then the value function is

v(x) = sup
τ∈T

Ex[e−Λτh(Xτ)], x ∈ (a, b)

where T is a set of stopping times.

Objectives of an optimal stopping problem

• characterize the value function by an analytical form (even an explicit form, if
possible);

• find the optimal stopping time to maximize the expectation shown in the
expression of the value function.

The Big Question

Under the Ito diffusion models, the cases with continuous and bounded reward
functions have already been thoroughly researched in the recent decades while
the irregular reward function cases, for example, the reward function is discon-
tinuous and/or unbounded, are still not so clear.

Methods

• Variational Characterization
The optimal stopping problem can be formulated as a free boundary value
problem by means of variational arguments. This approach is very general and
can be extended to multi-dimensional problems, but it requires ellipticity of the
diffusion and some regularity of the reward function. This method becomes
challenging when the reward function is discontinuous and unbounded.
Lamberton and Zervos[2006] constructed the relationship between the
variational inequality and optimal stopping problem in the infinite horizon case
without the requirement of the continuity and allowing the possibilities that it is
unbounded. Lamberton[2009] considered the finite horizon case for very general
one-dimensional diffusion only requiring the reward function to be Borel
measurable and bounded.

• Excessive Characterization
The value function is excessive with respect to the underlying process.
According to Dayanik and Karatzas[2003], by the equivalence between the
excessivity and the concavity , the value function of the optimal stopping
problem can be characterized as the smallest nonnegative generalized concave
majorant of the reward function.

Application

Considering the Down-and-in gap put option, refer to the following figure for the
positive payoff area and the reward function.

(a) Positive payoff area (b) Reward function
Figure: Reward Function

For the basic notations, let K be the strike price, b the barrier line, σ the volatility
of the stock price and r the risk free interest rate. Let (Ω, F ,P) be a complete
probability space with a standard Brownian motion Bt. Assume the price of the
underlying asset satisfies the SDE:

dSt = St(rdt + σdBt), S0 = x,

with state space I = (0, ∞). Then both boundaries are natural in the sense of
Feller’s classification. Denote {Ft} the natural filtration of S. Given the reward
function h(x), the value function is defined by

v(x) = sup
τ∈T

Ex[e−rτh(Sτ)], x ∈ (0, ∞),

where T is the set of finite stopping times.
• Variational Characterization

By the variational arguments, we can obtain the value function if we can
construct the corresponding variational inequality and solve it. The following
theorem solves such problem.

Theorem [Variational Inequality]
If a number q ∈ (0, b] and a convex decreasing function u in C([0, ∞)) ∩
C2((0, ∞) \ {q}) satisfy the following variational inequality:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2σ

2(x)u′′(x) + rxu′(x) − ru(x) < 0, 0 < x < q,
1
2σ

2(x)u′′(x) + rxu′(x) − ru(x) = 0, q < x < ∞,
u(x) = h(x), 0 < x < q,
u(x) > h(x), q < x < ∞,

then u(x) coincides with the value function v(x) of the above optimal stopping
problem. Moreover, the stopping time,

τ(0,q] := inf{t ≥ 0|St ≤ q},

is optimal.

This variational inequality can be solved using the smooth-fit principle when
K(1 − 1/β) < b.

• Excessive Characterization
Denote by L the infinitesimal generator of the above diffusion. Then equation
Lu = ru has two linearly independent, positive solutions ψ(x) and ϕ(x): ψ(x) is
strictly increasing and ϕ(x) is strictly decreasing. Denote F (x) = ψ(x)/ϕ(x) and
G(x) = −ϕ(x)/ψ(x), x ∈ [c, d], p(x) be the scale function of the above
diffusion. The following result will be essential.

Theorem (Dayanik and Karatzas[2003])
The value function is the smallest nonnegative concave majorant of h(x) on
(a, b) such that v/ϕ is F -concave (equivalently, v/ψ is G-concave) on (a, b).

Further according to the relationship between the generalized concave function
and the ordinary concave function, we can obtain the explicit form of the value
function, which is the same as the former method when K(1 − 1/β) < b.

Theorem [Value Function]

If K(1 − 1/β) < b, where β := 1 + 2r/σ2, then the value function is

v(x) =
⎧
⎨

⎩
K − x, x ∈ [0, K(1 − 1/β)],
[K(1 − 1/β)]βx1−β/(β − 1), x ∈ (K(1 − 1/β), ∞),

Moreover, the optimal stopping time is
τ ∗ = τ(0,K(1−1/β)].

If K(1 − 1/β) ≥ b, then the value function is

v(x) =
⎧
⎨

⎩
K − x, x ∈ [0, b],
(K − b)(x/b)1−β, x ∈ (b, ∞).

Moreover, the optimal stopping time is
τ ∗ = τ(0,b].
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Hume’s Eclectic Method on Logic 
 

SUGAWARA Hiromichi (Philosophy, D3) 
Graduate School of Arts and Letters, Tohoku University 

Introduction 
In ‘Abstract of the Treatise’, under the pretense of being a book reviewer of his own work, A Treatise of Human Nature, the 18th century Scottish Philosopher David Hume stated, ‘The author has 
finished what regards logic’. Because it went against the prevailing logic at that time, his logic had a large implication on specific characters. That is, as a matter of form, it inductively pursues the 
principles of logic into the phenomenological world composed of ideas, rather than deductively in an axiomatic system that holds reasoning as valid from necessary premises. The objects to be 
treated in his reasoning are only our ideas, and therefore, he studies the mental or moral operations of humans, who are unintentionally engaged in reasoning concerned, as faculties or functions 
dependent on human nature. It is generally interpreted that he divided reasoning into demonstrative and probable reasoning in the same manner as he divided its objects. He presents, however, the 
notion in the last section of Book I of Treatise, ‘Conclusion of this book’, that he could not sincerely devote himself, in his path of life, to only one aspect within the two species of reasoning. On the 
other hand, he also makes an unanticipated statement in first Enquiry that ‘it is, at bottom, erroneous, at least, superficial’. In this presentation, I show his substantial relationship between them. 
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(2)  The Sole End of Hume’s Logic 
 
Now, what does logic mean specifically for Hume? I think that to answer the fair-seeming 
question, we should firstly pay attention to his criticism on existing and prevailing logic 
that was still taught at schools in those days. 
 
This error consists in the vulgar division of the acts of the understanding, into conception, judgment, and 
reasoning, and in the definitions we give of them. […] But these distinctions and definitions are faulty in 
very considerable articles. (THN 1.3.7.n2) 
 
What we may in general affirm concerning these three acts of the understanding is, that taking them in a 
proper light, they all resolve themselves into the first, and are nothing but particular ways of conceiving 
our objects. […] the act of the mind exceeds not a simple conception. (ibid.) 
 
This kind of division of them we can easily find in the famous texts of logic in early-
modern times (Alnauld & Nicole, Watts, &c.). As opposed to them, he claims that we can 
naturally conceive the proposition composed of only one idea. This claim call a view like 
that Hume’s claim for demonstrative certainty entails needs for ‘mere forms or essences’ 
(Anderson 59-63). But I think that demonstrative certainty consists only in setting 
proportions in arithmetic, not in all the systems of mathematics or algebra. 
 

(1) Zabeeh’s Insights into Hume’s Logic The Sole End of Hume’s Logic 
 
Hume stated that ‘the sole end of logic is to explain the principles and operations of our 
reasoning faculty, and the nature of our ideas’ (THN intro. xvi). Indeed it might be come 
down to this one or two points in order to contribute ‘the science of man’, but he used 
the term ‘logic’ in a few manners in his works. F. Zabeeh divided Hume’s logic into three 
parts, which seemingly proper and consistent with each other (Zabeeh 106-107). 
 
 
 
 
 
 
 
 
 
From these standpoints, he articulated that ‘inquiry into the formal relation of terms and 
propositions (syntactics) is regarded by Hume as trivial and pretended reasoning’. But I 
think  is integrated into , whereas  and  are rightly classified. So, I will replace  
with my own view finally. 

(1)  Weintraub’s  Tentative Theory for Justification of Inference 
 
R. Weintraub presented three possible responses in cases of the justification of a form of 
inference (Weintraub 464). Her points consist in whether a mode of inference itself can 
be justified or not, and the reasons of those judgments in each cases. 
 
 
 
 
 
According to her, Hume chose (c) with respect to ‘induction’. The reason for ruling out (A) 
is that induction is not basic (intuitive). And the reason eliminating (B) is that induction 
can not be justified inferentially; because ‘it has no deductive justification’, though if 
inductive justifications had some mediate (e.g. the uniformity of nature), only to circular. 
 
On the other hand, she construed Hume as practically picking out (A) in case of 
‘deduction’. The reason for excluding (B) depends on  what Hume said, ‘the same 
principle cannot be both the cause and effect of another’ (THN 1.3.6.7). And the reason 
ruling out (C) derives from his stance not adopting skeptical attitudes towards deduction. 
 
But I disagree with her conclusion in case of deduction. Hume never countenance 
deduction or ‘arguments a priori’ as being possible to be justified as well as induction. 
Because they are appreciated in terms of our assurance of reasoning. 

(2)  Impermanency of Total Skepticism 
 
Hume presented skeptical arguments with our reason in Treatise as follows. 
 
‘In all demonstrative sciences the rules are certain and fallible; but when we apply them, our fallible and 
uncertain faculties are very apt to depart from them, and fall into error’. (THN 1.4.1.1) 
 
‘Since therefore all knowledge resolves itself into probability, and becomes at last of the same nature 
with that evidence, which we employ in common life…’. (THN 1.4.1.4) 
 
It is true that when he observe ‘all knowledge resolve itself into probability’, he does not 
necessarily assent to that kind of skeptical arguments. Rather he instead implies the 
influences for us to correct the first or prior judgments from the skeptical perspective of 
our reason, whereas the claims of total skepticism with regard to our reason or senses 
remain self-destructive; and also our unreliable faculties may still often make mistakes in 
demonstrative sciences. 
 
For Hume if this kind of skepticism, if ever not so strong as to break up demonstrative 
sciences, has the role to support  us, who are engaged in that sciences or other, then the 
first or prior judgments, relatively speaking, would practically take the character of 
probability, which has no certainty therefore requires many corrections up to gaining 
generalities. 
 

1.  The Role of Hume’s Logic  

2.  Counterarguments to Hume’s Requiring Certainty  

 
Thus, Hume’s dichotomy on  the issue of our reasoning , or division between argumentation 
from reason and  experience could be open to doubt, especially in that for him each 
reasoning is always treated as independently in academic or social fields. He observes in 
first Enquiry as follows. 
 
‘Though it be allowed, that reason may form very plausible conjectures with regard to the consequences of 
such a particular conduct in such circumstances; it is still supposed imperfect, without the assistance of 
experience, which is alone able to give stability and certainty to the maxim, derived from study and 
reflection’. (EHU 5.1.n1) 
 
‘But notwithstanding that this distinction be thus universally received both in the active and speculative 
scene of life, I shall not scruple to pronounce, that is, at bottom, erroneous, at least superficial’. (ibid.) 
 
But I think these are not problematic views but natural results of his standpoint. Because for 
Hume reasoning, either inductive or deductive, is irrelevant to their justification. As far as I 
know, Hume nowhere refers reasoning to be justified in his works. 

3. Skeptical Arguments against his Dichotomy 

 
To reconcile these seemingly paradoxical circumstances, I should comprehend what he 
implies in adopting reasoning from reason in our investigations; for example in physics. Of 
course, we do not always adopt reasoning only from reason, because we assume that what 
occurs in the phenomenological world can be inquired from the standpoints of causes and 
effects as ideas. 
 
Mathematics, indeed, are useful in all mechanical operations, and arithmetic in almost every art and 
profession: But (sic) ’tis not of themselves they have any influence. Mechanics are the art of regulating the 
motions of body to some design’d end or purpose; and the reason why we employ arithmetic in fixing the 
proportions of numbers, is only that we may discover the proportions of their influence and operation. 
(THN 2.3.3.2) 
 
We are conscious, that we ourselves, in adopting means to ends, are guided by reason (sic)  and design, and 
that ’tis not ignorantly nor casually we perform those actions, which tend to self-preservation, to the 
obtaining pleasure, and avoiding pain. (THN 1.3.16.2) 
 
Hume regards judgment from demonstration as useful and helpful as a means to ‘matters of 
fact’ which, like natural philosophy, inquires causally. And the ends lie in knowing the nature 
of what we quest for. This is the point peculiar to Hume’s logic that Zabeeh overlooked. And 
this argument above consistent with his view of ‘two kinds of truth’ that one is the 
discovery of the proportions of ideas, the other is ‘the conformity of our ideas of objects to 
their real existence’, which, in effects, desired as an exemplary stage. 

4.  Eclectic Method according as our Ends 

Jones, Peter. [1982], Hume’s Sentiments: their Ciceronian and French Context. 
Locke, John. [1689], An Essay concerning Human Understanding, edited by P. H. Nidditch. 
Mackie, J. L. [1979], ‘A Defence of Induction’, in Perception and Identity Essays Presented to a A. J. Ayer with his Replies to them, 
edited by G. Macdonald (pp.115-116). 
Moody, E. A. [1966], ‘The Medieval Contribution to Logic’, in Studies in Medieval Philosophy, Science, and Logic. 
Owen, David. [1999], Hume’s Reason. 
Passmore, J. A. [1952], Hume’s Intentions. 
Serjeantson, R. C. [2005], ‘Hume’s General Rule and the ‘Chief Business of Philosophers’’, in Impressions on Hume, edited by M. 
Frasca-Spada and P. J. E. Kail. 
Stove, D. C. [1965], ‘Hume, Probability, and Induction’, in David Hume: Critical Assessments Volume 2, edited by Stanley 
Tweyman. 
Tweyman, Stanley. [1974], Reason and Conduct in Hume and his Predecessors. 
Watts, Isaac. [1726], Logick: or, The Right Use of Reason. 
Weintraub, Ruth. [1995], ‘What was Hume’s Contribution to the Problem of Induction?’, in Philosophical Quarterly vol.45 
-------- [1997], The Sceptical Challenge. 
Winters, Barbara. [1979], ‘Hume on Reason’, in David Hume: Critical Assessments Volume 1, edited by Stanley Tweyman. 
Zabeeh, Farhang. [1960], ‘Hume’s Scepticism with regard to Deductive Reason’, in David Hume: Critical Assessments Volume 1, 
edited by Stanley Tweyman. 
-------- [1960], Hume: Precursor of Modern Empiricism. 

His logic is in part an inquiry into the causal operation of ‘our reasoning 
faculty’ (Philosophical Psychology). 
His logic in part consists of rules which an experimental philosophy ought to 
observe in his search for causal connection (Canons of Induction). 
His logic in part consists of principles which a philosopher ought to accept if he 
wants to talk sense and not nonsense (Principle of Meaning). 

(A)   A mode of inference can be basic – justified, but not by reference to another. 
(B)   Its justification might be mediate. 
(C)   It may be unjustified. 
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Introduction

 Maurice Merleau-Ponty, the French phenomenological 
philosopher, often mentions heroism in his  works. 
However, his  meaning of heroism is  different from 
previous  types of heroism. Therefore, this  poster 
presentation defines  heroism according to Merleau-
Ponty.
 

Heroism (until the Modern Age)

 In Sens et non-sens, Merleau-Ponty states  that 
heroism is  always  present. Yet, according to him, its 
meaning has  been changed by his  contemporaries. The 
following are previous  types  of heroism, as  shown by 
Merleau-Ponty.

 1) Until the Modern Age, the hero was  thought to be a 
representative of the will of God who was  present in 
the world. However, by the time of philosophers  such as 
Hegel and Nietzsche, people were unable to believe in 
transcendent existence outside of  the living world.
 2) For Hegel, a hero (under the older definition) was 
the protector of the world and the hero created 
(through his  actions) new laws and moralities  that the 
following era would recognize as  the truth. In other 
words, this  hero did what the history of the world 
wanted and he sacrificed himself  for the future.  
 However, such an antiquated type of heroism was  no 
longer the belief for Merleau-Ponty and his 
contemporaries  since they no longer believed that there 
were pre-established harmonies and an ideal direction 
for future society in the present world.
 3)For Nietzsche, the hero did not care about God and 
the rational flow of history and this  type of heroism 
regarded the ruler. However, it was  impossible to 
dominate absolutely after the hero’s death. 

Heroism (Merleau-Ponty and his 
contemporaries)

 People do not believe in such antiquated types  of 
heroism, but they still believe in heroism. Merleau-
Ponty considers  how the meaning of the hero has 
changed by focusing on the hero as  an actual human 
being. In Phénoménologie de la perception, 

Merleau-Ponty explains his  theory of human nature by 
presenting humans as  existing or être au monde. 
Such existence in physical form has  certain implicit and 
unachieved meanings  about the world, especially in the 
relationship between the world and the physical body 
that can move, express, and think. Due to such a link, a 
human can comprehend others and establish 
friendships  through individual efforts. Ideally, a hero, as 
a part of this  world, assumes his  and others’ situations, 
and never betrays his  comrades. Such a human is  the 
hero accord ing to Merleau-Ponty and h i s 
contemporaries.
 Concretely, facing a crisis  or even his  death, for what 
hero attempts  to fulfill this mission? With a clear goal, it 
is  easy to serve, but if it is  not clear, then does  he not 
regard the significance of his  own death? The 
sacrifice,his  practice is  not for what history 
wants(Hegel),not for Thanatos(Nietzsche), not for 
service futile. He sacrificed himself in order to present 
and prove to himself and others  what he and his 
comrades  believe(for example freedom ,equality)are 
true.

Conclusion

 This  poster presentation first classified the antiquated 
types  of heroism according to Merleau-Ponty and then 
defined heroism as presented by Merleau-Ponty and his 
contemporaries. 
 In addition, in Sens et non-sens, Merleau-Ponty also 
often mentions  politics. I think that focusing on the 
relationship between the hero and others  is  helpful 
when studying how Merleau-Ponty considered the 
relationship political between a leader and masses  of 
poeple. In the scene of policy making,to become a 
hero ,to be trusted by masses of people,a leader has  to 
assume his  and others’ situations, and he has  to 
continue dialogue with the world and others.Because he 
as  a human is  not the representative of the will of God 
nor the representative of  history. 

Reference
M . M e r l e a u - P o n t y, P h é n o m e n o l o g i e d e l a 
perception(1945),Gallimard,coll.«Tel,”2005
M.Merleau-Ponty,Sens et non-sens(1948),Gallimard,1995

From Heroism to the Politics of Dialogue
 Satoshi Nikaido,Department of Philosophy,Tohoku University
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1.  Introduction : Psychic structure and historicity of individual life  
  

In his late speculation, which is commonly known as “life philosophy,” Wilhelm 
Dilthey shifted his interest from the middle phenomenological and descriptive 
analysis of the individual mind to the interpretation of the historical world in which 
we live and act. In this case, the historical world is the spiritual one formed by 
human beings historically and the one in which we innerly experience and act upon. 
In addition, this world is clearly distinguished from the mere nature that exists 
outside of our minds. According to Dilthey, the subject that forms history is always 
“the mind, which lives, acts, bears the power of forming, and reacts sensitively to all 
the influences” ( , 254). In other words, the fact that the individual grasps, feels the 
world, and actively works on this world is the key to interpreting the historical world. 
Dilthey’s subject of analysis is the structure of the mind’s total ability to become a 
universal relational form to the world.  
  Each individual in their process of growth gradually develops the mind’s ability of 
thinking, feeling, and willing, each of which forms the conceptual, self, and practical 
knowledge in the world. Dilthey referred to the individual mind’s total ability as the 
“psychic acquired nexus” (das erworbene Zusammenhang). This nexus develops 
purposively in each individual history of growth. However, it is also formed by the 
common historical context, for example, the social community as family, political or 
legal organization, culture, and age. These common realms in the historical world 
always surround and influence the individual beyond their own life and the history of 
the individual is brought up only under the background of communal or all of 
humankind’s history. Therefore, each individual’s psychic acquired nexus 
“demonstrates both general and more individual characteristics” ( , 225–26).  
  
2. Individuality and productive nexus (Wirkungszusammenhang) of the 
historical world 
  
  In his late argument of history, Dilthey focuses his attention much more on the 
productive nexus in the historical world, which operates beyond the individual. 
According to Mul, “Although this world is produced by human beings, in its 
complex nexus it stands opposite the individual as a nexus that precedes him and 
affects him continuously and deeply” (2004, 261). The social and cultural 
communities (or the political and economic organizations) are common spiritual 
realms that consist of the individual and, at the same time, form the purposive nexus 
independent of the individual mind’s purposive nexus. In this case, Dilthey believes 
that the productive nexus of the communal organization and the purposive nexus of 
the individual mind is continuous: “It is indeed in this psychic structure that the 
character of purposiveness is originally given and when we attribute this to an 
organism or to the world, this concept is only borrowed from the inner lived 
experience” ( , 210). 
  Furthermore, according to Dilthey, the individual action is, on one hand, dependent 
on the communal motivation, which is not necessarily awakened by the individual. 
Each individual, as one unity of life, possesses a complete closed psychic system. 
However, at the same time, such a system is open for interaction with the common 
broader unity of life in the historical world ( , 154). The passion or feeling that 
induces individual action works on the historical world and influences the power of 
forming. However, each of these is also restricted within the individual inner side 
and the purpose can differ ( , 257). The purpose of the individual act can function 
as the common purpose beyond the individual. Thus, Dilthey finds that the 
particularity of the productive nexus of the historical world (with regard to the 
purpose of the self) can become the common historical purpose. 
  
 

3. Discrepancy between individuality and objectivity of science 
 
. The problem here is that Dilthey overemphasized the continuance between the 
individual and the community. In addition, he rarely referred to the possible dangers 
of organizations operating away from the individual such as the oppression of 
freedom.  
  As often criticized, Dilthey (under the influence of Georg Wilhelm Friedrich Hegel) 
aimed at the ideal and harmonious relationship between the individual and the 
community by using the Hegelian term “objective spirit.” According to Dilthey, an 
individual’s meaning of life lies in the historical nexus that works on the world 
beyond their and the individual’s finiteness is regarded as the aspect to overcome to 
acquire the objective of understanding life. In this regard, the keystone of Dilthey’s 
philosophy, namely that “the history of man should be sought in the individual who 
weaves the nexus of life as an element,” becomes difficult to explain. 
The content of Dilthey’s term “objectivity” is important to note. According to Mul, 
the objectivity of human sciences in Dilthey is clearly distinguished from the 
universal validity in natural sciences. 
 
 
 
 
 

 
In this case, Dilthey’s “objectivity” is tied with the “inter-subjectively accessible 
nexus” of the world (Mul, 2004, 261). More specifically, it depends upon the world 
shared and understood uniformly by an individual and other people surrounding 
them. In addition, “the more the world an interpretation reveals … the more 
objective it is” (ibid). Therefore, the interpretation of the historical world becomes 
more objective when the world in which the interpreter is embedded becomes 
clarified. 
 
4. Historicity and temporality of individual life: ―from Heidegger’s 
perspective― 

 
  According to Johach, Dilthey found that “the interest for the individual action 
which forms the community is always interfered by the ideal and esthetic interest for 
the objectification” (1974, 162–163). Accordingly, the task of human sciences, 
namely “becoming the certain foundation for the world of action” ( , 261), was not 
sufficiently accomplished by Dilthey. This is based on the fact that late Dilthey 
admitted the superiority of the objectivity of the human spirit, and the finiteness or 
temporality of life was retired from the main argument. In this regard, this author 
believes that Heidegger’s interpretation of the temporality of life helps to resolve 
Dilthey’s aporia of individuality and the objectivity of life since only the viewpoint 
of the temporality of acting man and the connection between the individual and 
objective human history can be found. 
  Heidegger defined human beings as “beings to the end” (Sein zum Ende), which 
alludes to the possibility of “being toward the future” in which the past can be 
initially brought to life for each present action. That is to say, the past history can be 
most effective by becoming the drive to the future. This supremacy of the future is 
also an important viewpoint for Dilthey in which he stated that,  “every 
understanding of the past should become the power to form the future” ( , 204). As 
mentioned above, the individual is, on one hand, created by the history of the 
community or all of mankind. On the other hand, the individual continuously works 
on the world and forms history. Originally, both of these passive and active aspects 
of the individual were important, but Dilthey places more emphasis on the already 
formed common social system compared to the individual action that forms the 
historical world. 
 
 
5. Action that links individual historicity to human historicity 
   
  Although the temporality and finiteness are isolated by Dilthey in his categorical 
analysis of life, Dilthey fails to connect these characteristics to the historicity of 
acting man. Action is supported by the common historical foundation of how to act 
and the individual mind’s psychic acquired nexus is utilized in each situation. In this 
case, the action includes the character of the peculiar event, which occurs only once 
in an individual’s history. Thus, the individual action appears to be regarded as the 
point of contact between the historicity of the individual and the history of the 
human past.  
  Each state of the historical world are formed and altered by their links with the 
movement of the individual’s mind. The world in which we have lived reveals itself 
each time in concrete individual actions. Therefore, the point of contact between an 
individual’s and humankind’s history can be found in finite actions that must remain 
focused on the future.  
   
References: 
Dilthey, W.,  Der Aufbau der geschichtlichen Welt in den Geisteswissenshaften ;  

G. S. , Vandenhoeck & Ruprecht,, 1958 
 … Die geistige Welt ; G.S. , Vandenhoeck & Ruprecht, 1957 

 Mul, J.,  The tragedy of finitude ; Yale University Press, 2004 
 Jung, M.,  Dilthey zur Einf hrung ; Junius Verlag, 1996 
 Johach, H., Handelnder Mensch und objective Geist ; Verlag Anton Haim, 1974 
 
 

Individuality and historicity of life  
                              - From Dilthey’s middle and late speculations - 

                                         Marika Hirama 
                                   Department of Philosophy, Tohoku University 
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‘Formal Ontology’ in Logical Investigations 
Echigo Masatoshi. Tohoku University, Philosophy. 

   In Logical Investigations, Husserl claims abstract 
notions also exist in another way, and shows how 
they relate and depend on each other. In this 
poster session, I would like to call this structure in 
Logical Investigations formal ontology. In this 
poster session, the whole structure of the ontology 
that remains implicit, and evaluation of the 
ontology are focused on. 

1. Categorical Intuition and its founded Character  
   It is necessary to identify categorical intuition and 
to distinguish it from sensible intuition before 
taking up formal ontology. Categorical intuition 
means intuitions that have no element of sensibility 
in expressions (XIX/2, 659; 661; 667). For example, 
to intuit what is expressed in expressions like ‘be’, 
‘and’, ‘all’, and ‘some’ is categorical intuition. 
   What is important here is the ‘founded’ character 
of categorical intuition. X being ‘founded’ by Y 
means that X could not exist without Y. Categorical 
intuition is founded by sensible intuition. From this 
point of view, Husserl characterizes categorical 
intuition as ‘higher’ act than sensible intuition. 
When you intuit something categorically, you intuit 
something (else) sensuously at the same time. 
    2. Three Kinds of Abstractions 
   We have to set the following as a premise of the 
discussion. ‘Categorical intuitions are finally based 
on sensuous intuitions’ (XIX/2, 712). On top of that, 
Husserl distinguishes three kinds of abstractions. 
‘We call schlicht act of intuition as sensuous act, 
and founded act which is reduced to sensuous act 
mediately or immediately, as categorical act. 
However what is even more important is to 
distinguish purely categorical act from act of 
understanding which is mixed up with sensuousness 
in categorical acts’ (XIX/2, 712). 
   Husserl says that sensible abstractions that give 
purely sensible things, for example, give colors and 
houses, sensible abstractions mixed up with 
categorical abstractions give some axioms in 
geometry and the character of having colors, and 
purely categorical abstractions that give purely 
categorical forms give collections, relations, 
concepts and so on (XIX/2, 713). 

relations in Logical Investigations explicit. Each kind 
of the abstractions is in founding relations each 
other as follows. 

   It matters that, at least in Logical Investigations, C 
can be said to be characterized as different 
abstraction from B. It is sure that when you intuit 
mathematical-logical thing, that categorical 
intuition C has to be founded by B. However C does 
not totally depends on B while C is founded by A 
through B. This is because B includes some 
elements of sensibility and the B founded only by 
sensible intuitions, not by categorical intuitions. 
According to Haddock (Haddock 1987), I would like 
to call B like this ‘premoderial’ B. C does not 
includes that kind of abstraction. It is sure that C is 
founded by premoderial B, but C itself has nothing 
to do with A. That is why C can abstract higher, 
mathematical-logical objects, and intuit them 
freely from the boundary of sensibility. This so 
called ‘gap’ between B and C comes from Husserl’s 
underlying view to categorical forms. 

4. Where is the Gap from? 
   In Logical Investigations, Husserl claims that 
purely categorical objects  exist against 
us( gegenueberstehen) (XIX/1, 51). However details 
about the ontological entity of the objects are not 
spoken of.  For example, Husserl revisited this 
theme, and he contemplates the problem over and 
over again (XX, 364; 369). 
  Husserl’s position on the purely categorical 
notions themselves and categorical notions mixed 
up with sensuousness is still vargue in Logical 
Investigations. This results in making the ‘gap’. 

Fig. (arrows mean founding) 
A. Sensuous Abstraction 
↓ 
B Categorical Abstraction mixed up with 
Sensuousness 
↓ 
C purely categorical Abstraction 

References 
E.Husserl. Logische Untersuchungen., Husserliana XIX/1-
2, Martinus Nijhoff, 1984. 
-. Logische Untersuchungen Ergaenzungsband 
2.TeilHusserliana XX, Martinus Nijhoff, 2005. 
G.E.R.Haddock."Husserl's epistemology of mathematics 
and the foundation of platonism in mathematics." in 
Husserl Studies Vol. 4-2, Martinus Nijhoff, 1987. 

3. The Model of Founding Relations in Logical 
Investigations 
   Now that three kinds of abstractions are made 
clear, it is necessary to make the model of founding 
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Comparative study of the concept of organism between Bergson and Kant
Katsuyuki Kuriyama

(Philosophy, Tohoku University)

Introduction 
This is a comparative study of the concept of organism between Henri 

Bergson and Immanuel Kant. They regard organisms as self-creating and 
self-organizing respectively. Both these determinations contain the sense of 
not being made by an external cause. Therefore, the two philosophers’ 
conceptions of organism are sometimes equated (cf. F. Dagognet). This 
study clarifies how Bergson and Kant consider organisms and indicates the 
differences between their two approaches by referring to L’évolution
créatrice (Creative Evolution) by Bergson and Kritik der Urteilskraft
(Critique of Judgment) by Kant.   

Kant: Organisms are self-organizing.
(in the sense that both mean organisms are not what  are made by an external cause)

Bergson: Organisms are self-creating.   

→ Differences between them?                              

Background
With regard to the phenomena of organisms, two doctrines often contend 

with one another: mechanism and teleology. It is certain that organisms are 
difficult to explain in terms of mechanism since they have finality or 
purposiveness. However, people hesitate to adopt teleology since it often 
introduces supernatural and unobservable factors such as external 
intelligent cause, purpose, and intention. We call such a teleology 
“anthropomorphic” since its organisms (according to analogy) are much 
like watches made by watchmakers. In this kind of situation, another mode 
of explanation is necessary which can become a doctrine that considers 
organisms to be self-organizing or self-creating.

Mechanism anthropomorphic Teleology

The third approach 
= The theory of self-organization or self-creation

The concept of organism by Kant
Kant defines organisms as natural purpose (Naturzweck), which includes 

two determinations:1)
its parts reciprocally produce one another to form its whole; and 2)
the idea of its whole is the cognitive ground for estimating the systematic 
unity of the form and combination of its parts.

According to the first determination, Kant distinguishes organisms as 
natural purpose from machines which an intelligent being intentionally 
produces, for, according to Kant, reciprocal production of the parts never 
occurs in such machines. The whole of an organism is formed through 
reciprocal production of its parts, not by an external intelligent cause. In 
this regard, Kant considers that organized beings are self-organizing.

However, the second determination means that entire organism must be 
regarded as a purpose by human beings. In this case, only intelligent beings 
can have purposes, and therefore Kant introduces an intelligent cause for 
the determinations of organisms.

Of course, Kant does not mean that such an intelligent cause should exist 
objectively, but that it belongs to the subjective principle according to 
which we must estimate organisms. However, it remains true that an 
intelligent cause, whether its existence is regarded as objective or 
subjective, is inseparable from the phenomena (or concept) of organisms. 
Therefore, according to Kant, organisms must have an aspect of what are 
made by an external intelligent cause, and they are not thoroughly self-
organizing nor self-creating.

The concept of organism by Bergson
Bergson explains organisms as self-creating according to the following 

procedures: 1)
negation of the reality of material elements that constitute an organism; and 
2)
comprehension of organisms by analogy with psychological duration.

Through the first procedure, the common presupposition of mechanism 
and teleology is denied. Teleology as well as mechanism supposes that 
organisms consist of a multiplicity of material elements. In other words, 
just because the reality of material elements is supposed, there should be an 
intelligent cause that intentionally produces systematic unity such as 
organisms. Bergson denies the reality of material elements. According to 
him, the number of elements is relative to the analysis of an observer. In 
this manner, Bergson attempts to overcome both mechanism and teleology.

Based on the second procedure, Bergson explains organisms through an 
analogy with psychological duration. Psychological duration is movement 
as an indivisible continuity, and it potentially contains distinct moments. It 
is a certain unity, which is dynamic. This dynamic unity is regarded as 
more than systematic unity, which is static and given by an external cause. 
Therefore, through such an analogy with psychological duration, organisms 
are conceived to be what is self-creating. In another words, Bergson denies 
the absolute reality of the nature described by science, revises the concept 
of nature, considers organisms that have more than systematic unity, 
potentially including it, without ceasing being the natural phenomena.

Conclusion 
Based on the findings, we can conclude that in Kant, organisms are not 

completely explained as what are not made by an  intelligent being but self-
organizing. On the other hand, according to Bergson, they are not what  are 
made by such a being at all. Kant does not completely detach himself from 
anthropomorphic teleology. 

It is also important to note that there is a difference in the overall 
position between the two philosophers. Kant considers  the concept of 
natural purpose(organisms) or  intelligent cause to be a subjective reality 
while Bergson insists on the objective validity of his theory of organism.

Problems for future discussion
Is there some possibility that, in Kant, the characteristic of self-

organization in organisms will be compatible with the causality of an 
intelligent being?

Is Bergson’s analogy of organisms with psychological duration valid?  
More precisely, what enables Bergson to consider in some sense that 
movement such as psychological duration is more than systematic unity? 

References
Bergson, H., L'évolution créatrice, 1907, PUF, coll. « Quadrige. Grands textes », 
2007  
Kant, I., Gesammelte Schriften, die König Preußische Akademie der Wissenschaften
(Hg.), Berlin, 1900-
Dagognet, F., Rematérialiser, Vrin, 1985, translation by Shigeo Ookoda, Hosei
University Press, 2010; p. 327
Mcfarland, J. D., Kant’s Concept of Teleology, University of Edinburgh Press, 1970
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Frege on Unsaturatedness
Tetsuya Yoshida (Department of Philosophy, Tohoku University)

Introduction
Purpose

To elucidate the notion of 
“unsaturatedness” in Gottlob Frege’s
works and to focus on the difference 
between unsaturatedness and the notion 
of function

Background
The relationship between unsaturatedness
and the notion of function is a contentious 
issue in the construal of Frege’s philosophy.

Methods
1. To analyze concepts, predicates, and the 
sense of predicates through Frege’s works. 
2. To compare the argument of functions 
with objects, proper names, and the sense 
of predicates. 

Materials
•… a function by itself must be called 

incomplete, in need of supplementation, or 
unsaturated. (FB, 6)
•… a concept is a function whose value is 

always a truth-value. (FB, 15)
• The second part =predicate is unsaturated -

it contains an empty place; only when this 
place is filled up with a proper name, does a 
complete sense appear. (FB, 17)
•… not all the parts of a thought can be 

complete; at least one must be unsaturated 
or predicative … (BG, 205)
• The unsaturated part of the thought we take 

to be a sense too: it is the sense of the part 
of the sentence over and above the proper 
name =the sense of the predicate . (NS, 
209)
• Every individual number is a self-subsistent 

object. (GLA, 55)
•… a proper name, which thus has as its 

Bedeutung a definite object …  (SB, 27)

Conclusion
Conclusion

1. Unsaturatedness is not intrinsically 
related to the notion of function. 
2. Predicates and the sense of predicates 
do not have the faculty of mapping. 
Therefore these are not a type of function. 

Future Discussions
Does unsaturatedness have a semantic 
role? If so, what is the role?

Results & Discussions
1. Concepts are functions that map objects 
for truth values. 

Concepts require an object that serves as the 
reference of proper names. When we allocate 
an object for this concept, we obtain a truth 
value. 

2. In the case of predicates and the sense 
of predicates, the arguments are not 
objects. 

Predicates require a proper name, and the 
sense of predicates requires the sense of
proper names. Functions require a number as 
an argument. Number is an object, but proper 
names and the sense of proper names are not. 

References
Frege, G.
(GLA) Die Grundlagen der Arithmetik: eine logisch-
mathematische Untersuchung über den Begriff der 
Zahl, Breslau: W. Koebner, 1884. 
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(SB) ‘Über Sinn und Bedeutung’, in Zeitschrift für 
Philosophie und philosophische Kritik, 100, 1892, 25–
50. 
(BG) ‘Über Begriff und Gegenstand’, in 
Vierteljahresschrift für wissenschaftliche Philosophie, 
16, 1892, 192–205.
(NS) Hermes, H., Kambartel, F., and Kaulbach, F. (eds.), 
Nachgelassene Schriften, Hamburg: Felix Meiner, 1969.  
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The golden mode of  
Higgs generation process  
in ILC is ee -> ZH. 

• Basic Characteristics 
• pixel size : 5μm x 5μm 
• sensor thickness : 50μm 
• number of pixels : ~109 

• fully depleted CCD      two-track separation capability : Good   
• three doublet structure    

     background rejection by cluster shape : Good 
• readout par one train  

     completely free from beam-induced RF noise (EMI) 
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space resolution : Very Good 
pixel occupancy of background : Good

Performance Evaluation and Software Development  
for FPCCD Vertex Detector in ILC 

Tohoku University  Tatsuya Mori
ILC (International Linear Collider) is 
a next generation lepton collider for 
the high energy frontier physics. 

• Basic Characteristics 
• e+e- collider 
• total length = 31 km 
• ECM = 250 ~ 500 GeV (upgrade : 1 TeV) 
• peak luminosity = 2  1034 cm-2s-1 

What is ILC? Higgs Study in ILC One of purposes of ILC is to measure Higgs coupling 
constant precisely, especially to b-quark and c-quark. 

can be measured  
precisely!

c  = 455 μm

c  = 123 μm

Vertex Detector is required 
to see measure 100 μm scale  
and  below.

FPCCD Vertex Detector FPCCD (Fine Pixel CCD) Vertex Detector will enable precise flavor tagging. 

Performance Evaluation and Software Development for FPCCD
Pixel Occupancy of Background

Before building FPCCD Vertex Detector, its performance should be evaluated and optimized. 

Momentum(GeV/c)
1 10 210

(m
m

)
r

-310

-210
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Occupancy must  
be lower than ~3%  
in each layer. 

Impact Parameter Resolution 
 (without B.G.) 

Pixel-size configuration has been optimized  
to reduce power consumption of readout.   

If pixel size in the outer 4 layers are  
10μm x 10μm, then power consumption of readout is 
decreased by 70%. If both occupancy and  
I.P. resolution remain OK, this value is very attractive.  

I.P. resolution remains almost same 
as all 5μm configuration.

Occupancy requirement cleared 
with 10μm x 10μm pixel configuration! 

From these two results,  
we can conclude that 

using 10 x 10 μm2 for outer layers  
is an attractive configuration.

Currently, tracking efficiency and I.P. resolution with 
B.G. is being studied. The followings are tentative results.
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This shows I.P. resolution with  
background. Even if number of  
BX increases, it doesn’t  
increase so much. 
 

This shows tracking 
efficiency with background.  
Definition of the efficiency is  
whether there are more than 5 
hits used in VXD. 

Problems about the efficiency: 
1. Why is the efficiency at 1GeV with 0BX very low? 
2. Why is the efficiency at 1GeV with 100 ~ 1000BX higher 
than that with 0BX?              
 Now the tracking algorithm is being checked. g g g

. 

Tracking Algorithm: I’ll check and modify it. 
Beam Test: June 2013.  
I’ll prepare analysis code to derive  
FPCCD’s excellent spatial resolution. 

ILC is a lepton collider, so precise measurement of Higgs 
boson coupling to b-quark and c-quark can be done. 

FPCCD prototype : 6μm x 6μm

Main background in VXD is caused by 
electron-positron beam. 

definition: impact parameter μ

μ μ

μ μ
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